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Abstract

This paper deals with perturbed dynamical systems of the form:

−ü + u = ∇V (u) + ε∇uW (t, u)

where u(t) ∈ IRn(n ≥ 1). By means of a variational approach the existence of multibump ho-
moclinics is proved under general assumptions on the Melnikov function. As a particular case,
if W (·, u) is T-periodic, the existence of approximate and complete Bernoulli shift structures
is proved. An application to partial differential equations is also given. 1

1 Introduction

This paper deals with homoclinics and chaotic behaviour for perturbed dynamical systems and
partial differential equations.

From the works of Poincaré [14] it became clear that the existence of homoclinic orbits deter-
mines a chaotic behaviour in the dynamics of a system. Consider a symplectic diffeomorphism
Φ : IR2n → IR2n with a hyperbolic fixed point p. The intersection points between the stable and
the unstable manifolds W s and Wu are called homoclinic points. Poincaré proved in [14] that if
W s and Wu intersect transversally then the diffeomorphism Φ admits infinitely many homoclinic
points. This result was later improved by Birkhoff and Smale. They proved that in presence of a
transverse homoclinic point r 6= p, the map Φ admits a Bernoulli shift structure. In particular it
implies sensitive dependence on initial conditions and more precisely that the topological entropy
of Φ is positive.

The Smale-Birkhoff theorem can be applied to T -periodic Hamiltonian systems through the
Poincaré map defined as the time-T map of the Hamiltonian vector field.

For small perturbations of autonomous Hamiltonian systems the transversality condition can
be checked using the Melnikov function. The existence of simple zeros of the this function implies
the existence of transverse intersections.

All the former results are obtained by analytical methods.
In recent years with the works of Bolotin [7] and Coti-Zelati-Ekeland-Séré [8] variational meth-

ods too have been successfully applied for the search of homoclinics. In [16] E. Séré developed new
variational technics to prove, under global assumptions, the existence of infinitely many homoclinic
solutions of “multibump” type. Generalizing [16] the same author proved in [17] the existence of
an approximate Bernoulli shift structure; this is sufficient to show that the topological entropy of
the system is positive and hence that the dynamics of the system is chaotic. Other papers extend
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the existence and multiplicity results of [8],[10],[16] and [17] to almost-periodic systems (see for
example [9],[13] and [15]).

Variational methods have been applied in the perturbative case too.
For example in [6] Bessi constructed, for the 1-dimensional pendulum with a periodic forcing

term, an approximate Bernoulli shift structure under the assumption that the Melnikov function
is non-constant.

More recently Ambrosetti and Badiale [1] used the Melnikov function to prove existence and
multiplicity results for homoclinics in perturbed Lagrangian systems and partial differential equa-
tions of Schrödinger type.

In order to have an idea of the method used in [1] let us consider second order Lagrangian
systems with n degrees of freedom of the form:

−ü+ u = ∇V (u) + ε∇uW (t, u) (1.1)

where V (0) = 0, ∇V (0) = 0, D2V (0) = 0 and W (t, 0) = 0, ∇uW (t, 0) = 0. Homoclinic solutions
of (1.1) are critical points of the Lagrangian functional:

fε(u) =
∫

IR

|u|2

2
+
|u̇|2

2
− V (u)− εW (t, u)dt.

If the unperturbed equation has a homoclinic u0 6= 0 then the set Z = {uθ = u0(· + θ)} is a
manifold of critical points for f0.

Ambrosetti and Badiale in [1] look for the existence of critical points of fε near the 1-dimensional
manifold Z. They show that critical points of fε close to Z can be found as critical points of the
restriction fε|Zε

where Zε is a 1-dimensional manifold close to Z ( Zε is called a natural constraint).
It turns out that fε|Zε

is, up to a constant, very close to the function εΓ where Γ is defined by:

Γ(θ) = −
∫

IR

W (t, u0(t+ θ))dt

This is nothing but the primitive of the Melnikov function and it will be called throughout this
paper the Melnikov primitive.

It follows that, roughly speaking, critical points of the Melnikov primitive Γ give rise to critical
points of the functional fε.

In this paper we generalize their method in order to prove the existence of multibump homoclinic
solutions and chaotic behaviour in such systems. We prove a connection between multiplicity results
for homoclinics and the properties of the Melnikov primitive. Roughly speaking when the Melnikov
primitive has critical points which are sufficiently separated there exist multibump solutions which
can be located. We prove this result showing that it is possible to construct, for ε small enough,
k-dimensional constrained manifolds, such that the critical points of the restriction of fε to these
manifolds give rise to k-bump homoclinic solutions of (1.1). Even if in general the unperturbed
functional f0 does not possess a k-dimensional manifold of critical points such a construction can
be performed because:

f0
′(u(θ1 + ·) + . . .+ u(θk + ·)) → 0

as mini(θi+1 − θi) → +∞.
Still in this situation, particular properties of the Melnikov primitive Γ induce the existence of

homoclinics uε; each bump of uε is located near u0(θ + ·) for some critical point θ of Γ.
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Moreover, using in the computations estimates which do not depend on the number of bumps
k, we obtain the existence of solutions of (1.1) with infinitely many bumps. See theorems 4 and 5,
which are the main results of this paper.

When the perturbation is periodic, a dynamical consequence of the existence of these multibump
solutions is the presence of an approximate Bernoulli shift structure (see [17]); in addition, if the
Melnikov primitive possesses at least one non-degenerate critical point then we prove by means of
this variational method a classical result, namely the existence of a complete (continuous) Bernoulli
shift structure in the dynamics of the system.

We underline that an advantage of the method is that, since all our results are obtained in the
same abstract variational setting, we do not require any general restriction on the time-dependence
of the perturbation such as periodicity, almost-periodicity, etc. If the perturbation is almost
periodic the condition that the Melnikov primitive is non constant is sufficient to guarantee the
existence of infinitely many homoclinics and of solutions with infinitely many bumps.

Moreover our method is well suited also to study partial differential equations of Schrödinger
type.

For the sake of clarity we prefer to prove, first, the existence of 2-bump solutions, developing
all the computations in a case in which the technicalities are as small as possible. We underline
that the existence of k-bump solutions and of solutions with infinitely many bumps do not require
any stronger assumption on the Melnikov primitive.

The paper is organized as follows:
Section 2 is devoted to the proof, whenever the Melnikov primitive satisfies suitable conditions,

of the existence of infinitely many 2-bump solutions.
Section 3 deals with solutions with infinitely many bumps. In addition a uniqueness result is

proved under the assumption that the Melnikov primitive possesses non-degenerate critical points.
In Section 4 we study some consequences of the results of section 3 in the periodic case, such

as the existence of a Bernoulli shift structure.
Section 5 concerns other second-order systems and an application of the method to partial

differential equations of Schrödinger type.

Contents

Notations

• ∇V = (DiV )1≤i≤n, the gradient of V ;

• Dk, the k-th derivative;

• f ′, the gradient of the functional f ;

• f ′′, the second derivative of the functional f ;

• E = W 1,2(IRm, IRn), the standard Sobolev space with the scalar product (·, ·) defined by
(u, v) =

∫
IRm(∇u∇v + uv) and the norm ||u||2 = (u, u).

• We shall use the continuous embeddings E ↪→ Lq(IRm, IRn) where 2 ≤ q ≤ 2∗ = 2m
m−2 if

n ≥ 3, 2 ≤ q <∞ if m = 2 and 2 ≤ q ≤ ∞ if m = 1;

• un ⇀ u and un → u will mean that un converges respectively in the weak and in the strong
topology to u in E;
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• There is an action of IRm on E defined by θ ∗u = u(θ+ ·) which preserves the scalar product
(·, ·);

• 〈φ1, . . . , φm〉 := span{φ1, . . . , φm} = {α1φ1 + · · ·+ αmφm | αi ∈ IR}.

C, C ′, C ′′ will denote in the proofs positive constants which do not depend of anything, but
which can take each time a different value.

The notation Ci will be reserved to positive constants which appear in the lemmas and which
have a fixed value.

Moreover oL(1) (resp. oL,ε(1)) will denote a quantity which tends to 0 as L → +∞ (resp. as
L→ +∞ and ε→ 0 ) independently of anything else.

The expression “a(z1, . . . , zp) = O(b(z1, . . . , zp))′′ will mean that there is an absolute positive
constant C such that for all (z1, . . . , zp), |a(z1, . . . , zp)| ≤ C|b(z1, . . . , zp)|.
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2 Existence of 2-bump solutions

In this section we consider the perturbed second order system of differential equations:

−ü+ u = ∇V (u) + ε∇uW (t, u) (2.1)

where u ∈ IRn (n ≥ 1).

2.1 Hypotheses and variational formulation

We assume that:

• (V1) V ∈ C2(IRn, IR), V (0) = 0, ∇V (0) = 0, D2V (0) = 0;

• (W1)W ∈ C2(IR×IRn, IR), W (t, 0) = 0, ∇uW (t, 0) = 0, D2
uW (t, 0) is bounded andD2

uW (t, ·)
is continuous uniformly with respect to t.

Because of (V1) the origin is a hyperbolic equilibrium of the unperturbed system.
We will work in the Sobolev space E = W 1,2(IR, IRn). For u ∈ E we set:

F (u) = −
∫

IR

V (u)dt and G(u) = −
∫

IR

W (t, u)dt.

Note that because of (V1) and (W1) the functionals F and G are well defined. Moreover, using
the continuous embedding W 1,2(IR, IRn) ↪→ L∞(IR, IRn), it can be checked that F and G are of
class C2 on E.

Homoclinic solutions of (2.1) are critical points of the functional:

fε(u) =
1
2
||u||2 + F (u) + εG(u). (2.2)

As in [1] we require some non-degeneracy condition on the unperturbed equation:

−ü+ u = ∇V (u). (2.3)

We will assume:

• (V2) ∃u0 ∈ E such that u0 solves (2.3) and Kerf ′′0 (u0) = span{u̇0}.

Then equation (2.3) has a homoclinic u0 ∈ E such that the solutions φ ∈ E of the linearized
equation

−φ̈+ φ = D2V (u0(t))φ (2.4)

form a one dimensional space.
Since the functional f0 is invariant under the action of IR, Z = {uθ = u0(· + θ) | θ ∈ IR} is a

C2 one-dimensional manifold of critical points at level b = f0(u0) and Tuθ
Z = span{u̇θ} = 〈u̇θ〉.

Hypothesis (V2) implies that the critical manifold Z is non-degenerate, i.e. Tuθ
Z = Kerf ′′0 (uθ)

for any θ ∈ IR.
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2.2 A result on the existence of infinitely many 2-bump solutions

In this paragraph, for the sake of clarity, we show which kind of results can be obtained in section
2.

Let us consider the Melnikov primitive Γ : IR → IR defined by:

Γ(θ) = −
∫

IR

W (t, u0(t+ θ))dt.

We make the following hypotheses on Γ:

Condition 1 There are η > 0 and a sequence (Un = (cn, dn))n∈ZZ of bounded open intervals of IR
which satisfy:

(i) Γ|Un
attains its minimum at some an ∈ (cn, dn) and Γ|{cn,dn} ≥ Γ(an) + η;

(ii) cn → +∞ as n→ +∞ and dn → −∞ as n→ −∞.

At the end of section 2 we will list some cases in which Condition 1 is satisfied.
The following theorem will be proved in section 2.5:

Theorem 1 Let (V1),(V2),(W1) and condition 1 hold. For ε 6= 0, |ε| small enough there exists Lε

such that if ci2 − di1 > Lε then fε has a critical point uε located near some uθ1 + uθ2 with θ1 ∈ Ui1

and θ2 ∈ Ui2 .

An immediate consequence of theorem 1 is the following corollary:

Corollary 1 Let (V1),(V2),(W1) and condition 1 hold. There exists ε1 > 0 such that ∀|ε| < ε1,
ε 6= 0 equation (2.1) has infinitely many 2-bump solutions.

Remark 1 At the end of section 2 we will state a more general result ( see theorem 2) on the
existence of k-bump solutions.

2.3 The natural constraint ZL,ε

Definition 1 A submanifold M ⊂ E is called a natural constraint for the functional fε if

u ∈M and (fε|M )′(u) = 0 imply that f ′ε(u) = 0.

Under hypotheses (V1),(V2) and (W1) Ambrosetti and Badiale in [1] build a 1-dimensional
natural constraint Zε for fε near the critical manifold Z. Our aim is to build a natural constraint
for 2-bump solutions.

Consider a cut-off function ϕ ∈ C∞(IR, IR) such that:

ϕ(t) = 1 for |t| < 1
8
, ϕ(t) = 0 for |t| > 1

4
and ||ϕ̇||∞ < 16.

Next define the function:
uL

0 (t) = ϕ(
t

L
)u0(t).

We will denote by uL
θ the translate of uL

0 : uL
θ = uL

0 (θ + ·) = θ ∗ uL
0 . Note that supp uL

0 ⊂ [−L
4 ,

L
4 ]

and that if θ2 − θ1 > L then supp uL
θ1
∩ supp uL

θ2
= ∅. Moreover:

uL
0 → u0 and u̇L

0 → u̇0 as L→ +∞.
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(Explicit estimates on ||u0 − uL
0 || and ||u̇0 − u̇L

0 || will be given in lemma 10-(i)). In order to prove
theorem 1 we will build for L large enough a natural constraint ZL,ε for the functional fε close to
the 2 dimensional manifold:

ZL = {uL
θ1

+ uL
θ2
| θ2 − θ1 > L}.

This will be possible because by (V1):

f0
′(uL

θ1
+ uL

θ2
) = f0

′(uL
θ1

) + f0
′(uL

θ2
) → 0 (2.5)

if θ2 − θ1 > L and L→ +∞.
In order to build the C1 manifold ZL,ε we need some lemmas.

We define the norm of (X,µ1, µ2) ∈ E × IR2 by ||(X,µ1, µ2)|| = ||X||+ |µ1|+ |µ2|.

The tangent space to ZL at uL
θ1

+ uL
θ2

is equal to 〈u̇L
θ1
, u̇L

θ2
〉.

In the sequel we shall always assume that L > 8 ( it implies in particular that (supp uL
θ1

+
[−2, 2]) ∩ (supp uL

θ2
+ [−2, 2]) = ∅ if θ2 − θ1 > L).

For δ positive let:

V δ
L = {(v, θ1, θ2) ∈ E × IR2 | θ2 − θ1 > L, v ∈ 〈u̇L

θ1
, u̇L

θ2
〉⊥ and ||v|| < δ}.

Let hL : V δ
L → E be the map defined by hL(v, θ1, θ2) = uL

θ1
+ uL

θ2
+ v.

Lemma 1 There is δ0 > 0 such that, if L > 8, hL is a diffeomorphism from V δ0
L onto a neighbor-

hood of ZL.

Proof:
For δ > 0 we denote by Bδ the ball of center 0 and radius δ in E.
Let ψL : Bδ × {(θ1, θ2) | θ2 − θ1 > L} → E × IR2 be defined by:

ψL(v, θ1, θ2) = (v + uL
θ1

+ uL
θ2
, (v, u̇L

θ1
), (v, u̇L

θ2
)).

We shall prove that there exists δ0 such that for any L > 8, ψL is a C1 diffeomorphism onto a
neighborhood of ZL × {0} in E × IR2.

We will prove that for some δ0 > 0 and for any L > 8 :
(i) ψL is a local diffeomorphism on Bδ0 × {(θ1, θ2) | θ2 − θ1 > L}.
(ii) ψL is injective on Bδ0 × {(θ1, θ2) | θ2 − θ1 > L}.
From (i) and (ii) we will have that ψL is a global diffeomorphism from Bδ0×{(θ1, θ2)|θ2−θ1 >

L} onto a neighborhood of ZL × {0}.
Finally we will get lemma 1 noticing that V δ0

L = (ψL)−1(E × {0}).

Proof of (i):
Let (v, θ1, θ2) ∈ Bδ × {(θ1, θ2)|θ2 − θ1 > L}.
We have:

d(v,θ1,θ2)ψ
L(X,λ1, λ2) = (X + λ1u̇

L
θ1

+ λ2u̇
L
θ2
, (X, u̇L

θ1
) + λ1(v, üL

θ1
), (X, u̇L

θ2
) + λ2(v, üL

θ2
)).

Let B denote the linear operator defined on E × IR2 by:

B(X,λ1, λ2) = (X + λ1u̇
L
θ1

+ λ2u̇
L
θ2
, (X, u̇L

θ1
), (X, u̇L

θ2
)).

We have:
||(d(v,θ1,θ2)ψ

L −B)(X,λ1, λ2)|| ≤ δC||(X,λ1, λ2)|| (2.6)
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where C = supL>8 ||üL
0 || < +∞.

Moreover for all X ∈ E we can write X = Y +µ1u̇
L
θ1

+µ2u̇
L
θ2

where Y ∈ 〈u̇L
θ1
, u̇L

θ2
〉⊥, ||u̇L

0 ||2µi =
(X, u̇L

θi
) for i=1,2.

Thus

||B(X,λ1, λ2)|| = ||Y + (µ1 + λ1)u̇L
θ1

+ (µ2 + λ2)u̇L
θ2
||+ ||u̇L

0 ||2(|µ1|+ |µ2|).

and, since Y, u̇L
θ1
, u̇L

θ2
are pairwise orthogonal and infL>8 ||u̇L

0 || > 0, we get:

||B(X,λ1, λ2)|| ≥ C ′(||Y ||+ |µ1 + λ1|+ |µ2 + λ2|+ |µ1|+ |µ2|
≥ C ′(||Y ||+ |λ1|/2 + |λ2|/2 + |µ1|/2 + |µ2|/2).

Hence, since ||X|| ≤ ||Y || + (|µ1| + |µ2|)||u̇L
0 ||2 and maxL>8||u̇L

0 ||2 < ∞, there exists C ′′ > 0
such that:

||B(X,λ1, λ2)|| ≥ C ′′(||X||+ |λ1|+ |λ2|). (2.7)

Now choose δ0 > 0 such that δ0C < C ′′/2. By (2.6) and (2.7) we have that for all L > 8, for
all (v, θ1, θ2) ∈ Bδ × {(θ1, θ2)|θ2 − θ1 > L)}

||d(v,θ1,θ2)ψ
L(X,λ1, λ2)|| ≥

C ′′

2
||(X,λ1, λ2)||. (2.8)

Thus d(v,θ1,θ2)ψ
L is injective; in addition this operator has the form “Id + compact” hence it

is an isomorphism and ψL is a local diffeomorphism on Bδ0 × {(θ1, θ2)|θ2 − θ1 > L}.

Proof of (ii):
It is easy to check that for all γ > 0 there is η > 0 independent of L, such that for all (v, θ1, θ2),
(v′, θ′1, θ

′
2) in Bδ0 × {(θ1, θ2)|θ2 − θ1 > L}

||v − v′||+ |θ1 − θ′1|+ |θ2 − θ′2| < η =⇒ ||d(v,θ1,θ2)ψ
L − d(v′,θ′1,θ′2)

ψL|| < γ.

This uniform continuity property, combined with (2.8), gives that there exists ν > 0 ( indepen-
dent of L) such that:

0 < |θ1 − θ′1|+ |θ2 − θ′2|+ ||v − v′|| < ν ⇒ ψL(v, θ1, θ2) 6= ψL(v′, θ′1, θ
′
2). (2.9)

Now assume that : ψL(θ′1, θ
′
2, v

′) = ψL(θ1, θ2, v). Then

||uL
θ1

+ uL
θ2
− uL

θ′1
− uL

θ′2
||∞ = ||v′ − v||∞ ≤ ||v′ − v|| ≤ 2δ0. (2.10)

Since θ1 < θ2 and θ′1 < θ′2 we can assume that min(θ1, θ′1, θ2, θ
′
2) = θ1.

Thus θ2 − θ1 > L and θ′2 − θ′1 > L.
Hence [−θ1 − L/4,−θ1 + L/4]∩ (supp uL

θ2
∪ supp uL

θ′2
) = ∅ and by (2.10)

||uL
θ1
− uL

θ′1
||L∞[−θ1−L/4,−θ1+L/4] ≤ 2δ0.

Now it is easy to see that there is µ > 0, independent of L > 8, such that

||uL
θ1
− uL

θ′1
||L∞[−θ1−L/4,−θ1+L/4] < µ =⇒ |θ1 − θ′1| < ν/4. (2.11)

Taking δ0 smaller if necessary we can assume that 2δ0 < µ and 2δ0 < ν/2.
Thus we get ||v − v′|| < ν/2, |θ1 − θ′1| < ν/4 and ( by the same way ) |θ2 − θ′2| < ν/4.
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Therefore by (2.9) we get (v, θ1, θ2) = (v′, θ′1, θ
′
2). This concludes the proof of (ii). 2

In [1] the manifold Zε is found by mean of the implicit function theorem applied to the map:

H : IR× IR× E × IR → E × IR

with components H1 and H2 given by:

H1(ε, σ, v, γ) = f ′ε(uσ + v)− γu̇σ,

H2(ε, σ, v, γ) = (v, u̇σ).

The implicit function theorem can be applied because Kerf ′′0 (uσ) = 〈u̇σ〉 implies that the
partial derivative of H with respect to (v, γ) evaluated in (0, σ, 0, γ) is invertible.

We will generalize this approach to build ZL,ε.
Let us define the function:

HL : IR× IR2 × E × IR2 → E × IR2

with components HL
1 ∈ E and HL

2 ∈ IR2 given by:

HL
1 (ε, θ1, θ2, v, α1, α2) = f ′ε(u

L
θ1

+ uL
θ2

+ v)− α1u̇
L
θ1
− α2u̇

L
θ2
,

HL
2 (ε, θ1, θ2, v, α1, α2) = ((v, u̇L

θ1
), (v, u̇L

θ2
)).

Consider the partial derivative of HL:

∂HL

∂(v, α)
= (

∂HL
1

∂(v, α)
,
∂HL

2

∂(v, α)
)

evaluated at (0, θ, 0, α) (where θ = (θ1, θ2) and α = (α1, α2) ). It’s the linear operator of E × IR2

given by:

∂HL
1

∂(v, α) |(0,θ,0,α)

[X,µ1, µ2] = f ′′0 (uL
θ1

+ uL
θ2

)X − µ1u̇
L
θ1
− µ2u̇

L
θ2
,

∂H2

∂(v, α) |(0,θ,0,α)

[X,µ1, µ2] = ((X, u̇L
θ1

), (X, u̇L
θ2

)).

Since HL is linear in (α1, α2) there results that
∂HL

∂(v, α) |(ε,θ,v,α)

=
∂HL

∂(v, α) |(ε,θ,v)

is independent

of (α1, α2).

In lemma 2 we will prove that, provided L is great enough,
∂HL

∂(v, α) |(0,θ,0)

is invertible and the

norm of the inverse satisfies a uniform bound.
In lemmas 3 and 4 we will show how to build ZL,ε.

Lemma 2 There exist positive constants C1, L1 > 8 such that ∀L > L1, ∀θ = (θ1, θ2) with θ2−θ1 >
L, and ∀(X,µ1, µ2) ∈ E × IR2:

|| ∂H
L

∂(v, α) |(0,θ,0)

[X,µ1, µ2]|| ≥ C1||(X,µ1, µ2)||, (2.12)

i.e :

||f0′′(uL
θ1

+ uL
θ2

)X − µ1u̇
L
θ1
− µ2u̇

L
θ2
||+ |(X, u̇L

θ1
)|+ |(X, u̇L

θ2
)| ≥ C1(||X||+ |µ1|+ |µ2|). (2.13)
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Proof:
Arguing by contradiction we assume that the statement in lemma 2 does not hold.
Then we can define sequences Ln, θ

n = (θn
1 , θ

n
2 ), (Xn, µ

n
1 , µ

n
2 ) ∈ E×IR2 such that ||(Xn, µ

n
1 , µ

n
2 )|| =

1, Ln → +∞, θn
2 − θn

1 > Ln and

||f0′′(uLn

θn
1

+ uLn

θn
2

)Xn − µn
1 u̇

Ln

θn
1
− µn

2 u̇
Ln

θn
2
|| → 0, (2.14)

|(Xn, u̇
Ln

θn
1

)|+ |(Xn, u̇
Ln

θn
2

)| → 0. (2.15)

Using the invariance of f0 and of the scalar product (·, ·) under the action of IR we can assume
that θn

1 = 0 for any n.
Since ||Xn||, |µn

1 |, |µn
2 | are bounded, up to a subsequence Xn ⇀ X, µn

1 → µ1, µ
n
2 → µ2. We are

going to show that X = 0, µ1 = 0.
Let g ∈ E be fixed. From (2.14) we get that:

(f0′′(uLn
0 + uLn

θn
2

)Xn, g)− µn
1 (u̇Ln

0 , g)− µn
2 (u̇Ln

θn
2
, g) → 0. (2.16)

Since D2V (0) = 0 we have

(f0′′(uLn
0 + uLn

θn
2

)Xn, g) = (Xn, g)−
∫

IR

D2V (uLn
0 + uLn

θn
2

)Xng

= (Xn, g)−
∫

IR

D2V (uLn
0 )Xng −

∫
IR

D2V (uLn

θn
2

)Xng.

Since uLn
0 → u0 in L∞, by the uniform continuity of D2V on bounded subsets of IRn,

D2V (uLn
0 ) → D2V (u0) in L∞. Consequently,∫

IR

D2V (uLn
0 )Xng →

∫
IR

D2V (u0)Xg. (2.17)

Next supp uLn

θn
2
⊂ [−θn

2 − Ln/4,−θn
2 + Ln/4] and θn

2 > Ln hence supp uLn

θn
2
⊂ (−∞,−3Ln/4).

Therefore, since D2V (0) = 0,∣∣∣∣∫
IR

D2V (uLn

θn
2

)Xng

∣∣∣∣ =

∣∣∣∣∣
∫ −3Ln/4

−∞
D2V (uLn

θn
2

)Xng

∣∣∣∣∣ ≤ ||D2V (uLn

θn
2

)||∞||Xn||2||g||L2(−∞,−3Ln/4).

||Xn||2 and ||D2V (uLn

θn
2

)||∞ being bounded we get∫
IR

D2V (uLn

θn
2

)Xng → 0. (2.18)

as n→∞. Moreover Xn ⇀ X, u̇Ln
0 → u̇0 and u̇Ln

θn
2
⇀ 0 imply

(Xn, g) → (X, g), µn
1 (u̇Ln

0 , g) → µ1(u̇0, g), µn
2 (u̇Ln

θn
2
, g) → 0. (2.19)

From (2.16),(2.17),(2.18) and (2.19) we get

(X, g) +
∫

IR

D2V (u0)Xg − µ1(u̇0, g) = 0.
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Since this equality holds for all g ∈ E we have that:

f ′′0 (u0)X = µ1u̇0. (2.20)

Since f ′′0 (u0) is symmetric and u̇0 ∈ ker f ′′0 (u0) (2.20) implies that µ1 = 0 and X ∈ ker f ′′0 (u0) =
TZu0 = IRu̇0. Now from

(Xn, u̇
Ln
0 ) → 0

we have (X, u̇0) = 0. Hence X = 0.

Thus Xn ⇀ 0 and µn
1 → 0. Similarly it can be proved that (−θn

2 ) ∗Xn ⇀ 0 and µ2 = 0.
Now, from (2.14), since µn

1 and µn
2 → 0 we have:

||Xn||2 −
∫

IR

D2V (uLn
0 )X2

n −
∫

IR

D2V (uLn

θn
2

)X2
n → 0. (2.21)

We can write ∫
IR

D2V (uLn
0 )X2

n =
∫ A

−A

D2V (uLn
0 )X2

n +
∫

[−A,A]c
D2V (uLn

0 )X2
n.

Since ||uLn
0 ||L∞([−A,A]c) → 0 as A → ∞ independently of n and D2V (0) = 0, the latter term in

the sum tends to 0 as A → ∞ independently of n. Moreover, for A fixed, the former term tends
to 0 because ||Xn||L2([−A,A]) → 0. Hence∫

IR

D2V (uLn
0 )X2

n → 0.

Similarly, using that (−θn
2 ) ∗Xn → 0 we get∫

IR

D2V (uLn

θn
2

)X2
n → 0.

These properties and (2.21) imply that ||Xn|| → 0, hence ||Xn||+|µn
1 |+|µn

2 | → 0, which contradicts
||Xn||+ |µn

1 |+ |µn
2 | = 1. 2.

Remark 2 It is easy to see that f ′′0 is uniformly continuous on bounded subsets of E. Hence there
exist positive constants δ1 ≤ δ0, C2 > 0 such that for all L > L1, for all θ = (θ1, θ2) such that
θ2 − θ1 > L for all v ∈ E with ||v|| ≤ δ1

|| ∂H
L

∂(v, α) |(0,θ,v)

[X,µ1, µ2]|| ≥ C2||(X,µ1, µ2)||.

Since
∂HL

∂(v, α) |(0,θ,v)

is of the form Id + compact, the latter estimate implies that it is invertible.

In order to build a natural constraint ZL,ε for fε, close to ZL, we first build a natural constraint
ML, diffeomorphic to ZL, for the unperturbed functional f0.

We can prove that:

Lemma 3 There exists L2 ≥ L1 such that ∀L > L2 there exists a C1 function w(L, ·) : {(θ1, θ2) | θ2−
θ1 > L} → {v ∈ E | ||v|| < δ1} such that w(L, θ1, θ2) ∈ 〈u̇L

θ1
, u̇L

θ2
〉⊥ and

f ′0(u
L
θ1

+ uL
θ2

+ w(L, θ1, θ2)) = α1u̇
L
θ1

+ α2u̇
L
θ2

(2.22)

for some (α1, α2) ∈ IR2.
Moreover sup{(θ1,θ2)|θ2−θ1>L}||w(L, θ1, θ2)|| → 0 as L→ +∞.
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Proof:
In this proof we shall use the following abbreviation:

bL(θ, w) =
∂HL

∂(v, α) |(0,θ,w)

∈ L(E × IR2)

We have to find w,α1, α2 such that

HL(0, θ1, θ2, w, α1, α2) = 0. (2.23)

In fact HL
1 = 0 means that f ′0(u

L
θ1

+ uL
θ2

+ w(L, θ1, θ2)) = α1u̇
L
θ1

+ α2u̇
L
θ2

and HL
2 = 0 means that

w ∈ 〈u̇L
θ1
, u̇L

θ1
〉⊥.

Let Bδ ⊂ E × IR2 be the ball in E × IR2 of center 0 and radius δ: Bδ = {(w,α1, α2) | ||w|| +
|α1|+ |α2| ≤ δ}. By lemma 2 and remark 2,

∀L > L1, ∀(θ1, θ2) such that θ2 − θ1 > L, ||(bL)−1(θ1, θ2, 0)|| ≤ 1
C1
. (2.24)

In order to solve equation (2.23) we do not apply directly the implicit function theorem because
HL(0, θ1, θ2, 0, 0, 0) 6= 0; we only have by (2.5) that HL(0, θ1, θ2, 0, 0, 0) → 0 if θ2 − θ1 > L and
L → +∞. We will solve equation (2.23) by means of the contraction-mapping theorem, proving
that, provided L is large enough and δ small enough, for all (θ1, θ2) with θ2−θ1 > L there is a unique
(w(θ1, θ2), α1(θ1, θ2), α2(θ1, θ2)) ∈ Bδ such that HL(0, θ1, θ2, w(θ1, θ2), α1(θ1, θ2), α2(θ1, θ2)) = 0.

Indeed HL(0, θ1, θ2, w, α1, α2) = 0 is equivalent to R(w,α1, α2) = (w,α1, α2) where:

R(w,α) = −(bL)−1(θ, 0)HL(0, θ, 0, 0)− (bL)−1(θ, 0)(HL(0, θ, w, α)−HL(0, θ, 0, 0)−bL(θ, 0)[w,α]).

We will find L2 and δ < δ1 such that if L > L2 and θ2 − θ1 > L then

• (i) R(Bδ) ⊂ B 2δ
3

;

• (ii) R is a contraction on Bδ, more precisely:

∀(w,α), (w′, α′) ∈ Bδ ||R(w,α)−R(w′, α′)|| ≤ 1
3
||(w,α)− (w′, α)||.

Since f ′′0 is uniformly continuous on bounded subsets of E, we can choose 0 < δ < δ1 such that:

∀L > L1,∀θ = (θ1, θ2) with θ2−θ1 > L and ∀w with ||w|| ≤ δ, ||bL(θ, w)−bL(θ, 0)|| < C1

3
. (2.25)

Moreover by (2.5) there is L2 ≥ L1 such that:

∀L > L2 and ∀θ = (θ1, θ2) ∈ IR2with θ2 − θ1 > L, ||HL(0, θ, 0, 0)|| < C1δ

3
. (2.26)

Let L > L2 and (θ1, θ2) with θ2 − θ1 > L be fixed.
Using (2.24), (2.25) and (2.26) we now prove (i). ∀(w,α1, α2) ∈ Bδ one has (setting α =

(α1, α2)):

||R(w,α)|| ≤ || − (bL)−1(θ, 0)HL(0, θ, 0, 0)||
+ ||(bL)−1(θ, 0)|| · ||HL(0, θ, w, α)−HL(0, θ, 0, 0)− bL(θ, 0)[w,α]||
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≤ 1
C1

C1δ

3
+

1
C1

||HL(0, θ, w, α)−HL(0, θ, 0, 0)− b(θ, 0)[w,α]||

=
δ

3
+

1
C1

||
∫ 1

0

(bL(θ1, θ2, sw)− bL(θ1, θ2, 0))[w,α1, α2]ds||

≤ δ

3
+

1
C1

∫ 1

0

||bL(θ1, θ2, sw)− bL(θ1, θ2, 0)||δds

≤ δ

3
+

1
C1

∫ 1

0

C1

3
δds =

2δ
3
.

Still by (2.24),(2,25) and (2.26) we prove (ii): ∀(w,α1, α2), (w′, α′1, α
′
2) ∈ Bδ one has:

||R(w,α)−R(w′, α′)|| = ||(bL)−1(θ, 0)
(
HL(0, θ, w, α)−HL(0, θ, w′, α′

)
− bL(θ, 0)[(w,α)− (w′, α′)])||

≤ 1
C1

||
∫ 1

0

(bL(θ, w + s(w′ − w))− bL(θ, 0))[(w,α)− (w′, α′)]ds||

≤ 1
C1

∫ 1

0

C1

3
||(w,α)− (w′, α′)||ds =

1
3
||(w,α)− (w′, α′)||.

Applying the contraction-mapping theorem we conclude that there is a unique (w(L, θ1, θ2),
α1(L, θ1, θ2), α2(L, θ1, θ2)) ∈ Bδ such that HL(0, θ1, θ2, w(L, θ1, θ2), α1(L, θ1, θ2), α2(L, θ1, θ2)) =
0.

Since HL(0, θ1, θ2, 0, 0) → 0 as θ2 − θ1 > L and L → +∞, by the properties of R we get that
w(L, θ1, θ2) → 0 as θ2 − θ1 > L and L→∞.

We now justify that w(L, ·) is C1. Indeed

HL(0, θ1, θ2, w(L, θ1, θ2), α1(L, θ1, θ2), α2(L, θ1, θ2)) = 0,

HL(0, ·) is a C1 function of (θ, w, α) and for ||(w,α1, α2)|| < δ

b(θ, w) =
∂HL

∂(v, α) |(0,θ,w)

∈ L(E × IR2)

is invertible. Hence the implicit function theorem can be applied and w(L, ·) is C1.2

Remark 3 Since w(L, ·) is C1, w ∈ 〈u̇L
θ1
, u̇L

θ2
〉⊥ and ||w|| < δ0 we derive by lemma 1 that ML =

{uL
θ1

+ uL
θ2

+w(L, θ1, θ2) | θ2 − θ1 > L2} is a C1 submanifold of E of dimension 2 and its tangent
space at uL

θ1
+ uL

θ2
+ w(L, θ1, θ2) is transversal to 〈u̇L

θ1
, u̇L

θ2
〉⊥. This implies that ML is a natural

constraint for f0 (see [1]).

Now we can state another lemma which enables us to build the natural constraint ZL,ε for fε.

Lemma 4 There exists ε0 > 0 such that ∀L > L2 there is a C1 function w̄(L, ·) : (−ε0, ε0) ×
{(θ1, θ2) ∈ IR2 | θ2 − θ1 > L2} → {v ∈ E | ||v|| < δ1} such that:

• w̄(L, 0, θ1, θ2) = 0;

• f ′ε(u
L
θ1

+ uL
θ2

+ w(L, θ1, θ2) + w̄(L, ε, θ1, θ2)) ∈ 〈u̇L
θ1
, u̇L

θ2
〉;

• w̄(L, ε, θ1, θ2) ∈ 〈u̇L
θ1
, u̇L

θ2
〉⊥.

13



Moreover there exists a positive constant C3 such that ||w̄(L, ε, θ)|| < C3|ε| for all L > L2 and
θ = (θ1, θ2) such that θ2 − θ1 > L.

We will also use the notation: w̄(L, ε, θ1, θ2) = w̄ε(L, θ1, θ2).

Proof: The proof is very similar to that of lemma 3. We don’t use directly as in [1] the implicit
function theorem because we have to justify that for any ε ∈ (−ε0, ε0) the function w̄(L, ε, ·) is
defined and C1 on the whole set {(θ1, θ2) ∈ IR2 | θ2 − θ1 > L}. We can apply the contraction
mapping theorem uniformly on {(θ1, θ2) ∈ IR2 | θ2 − θ1 > L2} because G′′ is bounded on bounded
subsets of E. 2

Finally we define for L > L2 and |ε| < ε0:

ZL,ε = {uL
θ1

+ uL
θ2

+ w(L, θ1, θ2) + w̄(L, ε, θ1, θ2) | θ2 − θ1 > L}.

By lemma 1, ZL,ε is a C1 2-dimensional submanifold of E and its tangent space at uL
θ1

+ uL
θ2

+
w(L, θ1, θ2) + w̄ε(L, θ1, θ2) is transversal to 〈u̇L

θ1
, u̇L

θ2
〉⊥.

Hence, in the same way as in [1], it is easy to prove that:

Lemma 5 ZL,ε is a natural constraint for fε.

Remark 4 In the previous arguments we could have considered a more general perturbation term
such as: W (ε, t, u) = εW (t, u) + o(ε)W1(ε, t, u) where W and W1 satisfy hypotheses (W1). (See
also [1]-[2]).

2.4 Expression of fε on ZL,ε

By lemma 5 we are led, in order to find 2-bump solutions, to look for critical points of the functional
fε restricted to the 2-dimensional manifold ZL,ε.

In the next lemma we find a suitable expression for the functional fε restricted to ZL,ε:

Lemma 6 For L > L2 and |ε| < ε0, fε|ZL,ε
has the following form:

fε(uL
θ1

+ uL
θ2

+ w(L, θ1, θ2) + w̄ε(L, θ1, θ2)) = 2b+ ε(G(uθ1) +G(uθ2)) + oL(1) +O(ε2). (2.27)

Proof:
Let L > L2, |ε| < ε0 and θ2 − θ1 > L. Since w̄ε ∈ 〈u̇L

θ1
, u̇L

θ2
〉⊥, by lemma 3, (f ′0(u

L
θ1

+ uL
θ2

+
w(L, θ1, θ2)), w̄ε) = 0; by lemma 4 ||w̄ε|| ≤ C3|ε|. Moreover, since f ′′0 and G′ are bounded on
bounded subsets of E we can write:

fε(uL
θ1

+ uL
θ2

+ w(L, θ1, θ2) + w̄ε(L, θ1, θ2)) = f0(uL
θ1

+ uL
θ2

+ w + w̄ε) + εG(uL
θ1

+ uL
θ2

+ w + w̄ε)
= f0(uL

θ1
+ uL

θ2
+ w) + (f ′0(u

L
θ1

+ uL
θ2

+ w), w̄ε)
+ O(||w̄ε||2) + εG(uL

θ1
+ uL

θ2
+ w) + εO(||w̄ε||)

= f0(uL
θ1

+ uL
θ2

+ w) + εG(uL
θ1

+ uL
θ2

+ w) +O(ε2).

.

There results that:

fε(uL
θ1

+ uL
θ2

+ w(L, θ1, θ2) + w̄ε(ε, θ1, θ2)) = 2b+ ε(G(uθ1) +G(uθ2)) +

(f0(uL
θ1

+ uL
θ2

+ w)− f0(uθ1)− f0(uθ2)) + ε(G(uL
θ1

+ uL
θ2

+ w)−G(uθ1)−G(uθ2)) +O(ε2).

Now, by lemma 3 ||w(L, θ1, θ2)|| = oL(1) hence:

f0(uL
θ1

+ uL
θ2

+ w(L, θ1, θ2)) = f0(uL
θ1

+ uL
θ2

) + oL(1) = f0(uL
θ1

) + f0(uL
θ2

) + oL(1).
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In the same way
G(uL

θ1
+ uL

θ2
+ w(L, θ1, θ2)) = G(uL

θ1
) +G(uL

θ2
) + oL(1).

Moreover

f0(uL
θ1

) + f0(uL
θ2

)− 2b = f0(uL
θ1

) + f0(uL
θ2

)− f0(uθ1)− f0(uθ2) = oL(1)

and
G(uL

θ1
) +G(uL

θ2
)−G(uθ1)−G(uθ2) = oL(1).

So we get formula (2.27) .2

It turns out that G(uθ) is nothing but the Melnikov primitive:

G(uθ) = Γ(θ) = −
∫
IR
W (t, u0(t+ θ))dt. (2.28)

2.5 Existence of infinitely many homoclinic solutions

This paragraph is devoted to the proof of theorem 1 and to a more general result on the existence
of infinitely many homoclinic solutions of (2.1).

Proof of theorem 1:
Choose 0 < ε1 < ε0 so small that in formula (2.27) |O(ε2)| < |ε|η/6 for |ε| < ε1, ε 6= 0. Let
ε ∈ (−ε1, 0) ∪ (0, ε1) be fixed. Choose Lε ≥ L2 such that ∀L > Lε one has in formula (2.27)
|oL(1)| < |ε|η/6. We denote by f̄ε the function of 2 real variables (θ1, θ2) defined by f̄ε(θ1, θ2) =
fε(uL

θ1
+ uL

θ2
+ w(L, θ1, θ2) + w̄(L, ε, θ1, θ2)).

Since ZL,ε is a natural constraint for fε each critical point (θ1, θ2) of f̄ε provides a critical
point uε of fε given by uε = uL

θ1
+ uL

θ2
+ w(L, θ1, θ2) + w̄ε(L, θ1, θ2). Since uL

θi
→ uθi

as L→ +∞,
sup{θ2−θ1>L}||w(L, θ1, θ2)|| → 0 as L → +∞ and ||w̄ε(L, θ1, θ2)|| < |ε|C1, the critical point uε is
located near uθ1 + uθ2 . So it is enough to verify that a local minimum ( if ε > 0, otherwise a local
maximum if ε < 0) of f̄ε can be found in Ui1 × Ui2 for each (i1, i2) ∈ ZZ2 such that ci2 − di1 > Lε.
We make the proof for ε > 0.

By formula (2.27) and our choice of ε1 and Lε, we have that:

f̄ε(ai1 , ai2) ≤ 2b+ ε(Γ(ai1) + Γ(ai2)) + ε
η

3
.

Moreover ∀(θ1, θ2) ∈ ∂(Ui1 × Ui2) we have from condition 1 that:

Γ(θ1) + Γ(θ2) ≥ Γ(ai1) + Γ(ai2) + η.

Therefore, using once more formula (2.27), if (θ1, θ2) ∈ ∂(Ui1 × Ui2) we have:

f̄ε(θ1, θ2) ≥ 2b+ ε(Γ(θ1) + Γ(θ2))− ε
η

3

≥ 2b+ ε(Γ(ai1) + Γ(ai2)) +
2
3
εη > f̄ε(ai1 , ai2).

The latter inequalities imply that f̄ε attains its minimum at some point (θ1, θ2) in Ui1 × Ui2 . The
proof of theorem 1 is complete.2

Remark 5 Note that Lε → +∞ as ε → 0. In section 3, using the exponential decay property of
u0, we will show that it is possible to take Lε = −K ln |ε| for some positive constant K.
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Remark 6 It is also possible to obtain solutions uε of (2.1) located near uθ1 + uθ2 where θ1 and
θ2 are two maxima of Γ.

Now we give some examples of perturbations W such that the Melnikov primitive Γ : IR → IR
satisfies condition 1.

• Periodic perturbation:

If the perturbation term W (t, u) is T -periodic in time then Γ is T -periodic. Any non-constant
periodic function Γ satisfies condition 1.

• Quasi-periodic perturbation:

If W (t, u) is quasi-periodic in time then Γ is quasi-periodic too. It is easy to show that a
non-constant quasi-periodic function satisfies condition 1.

• Almost-periodic perturbation:

Finally let us consider a perturbation termW (t, u) almost-periodic in t uniformly with respect
to x in compact subsets of IRn.

Let H(W ) ⊂ C(IR × IRn, IR) be the closure, for the topology of uniform convergence on
compact sets, of the set {W (·+ τ, x) | τ ∈ IR}.
Bochner’s criterion state that a functionW (t, x) is almost-periodic in t uniformly with respect
to x in compact sets if and only if H(W ) is compact in C(IR × IRn, IR) for the topology of
uniform convergence on sets IR×K with K compact.

Using Bochner’s criterion it is easy to see that if the perturbation W (t, u) is almost-periodic
in t uniformly with respect to x in compact sets then the Melnikov primitive Γ is almost-
periodic.

Therefore Γ : IR → IR satisfies condition 1, provided it is non constant.

It is straightforward to generalize the above construction to prove the existence of k-bump
solutions as stated in the following theorem:

Theorem 2 Let condition (V1), (V2), (W1) and condition (1) hold. For all k, for ε 6= 0 small
enough there exists Lε such that if minl=1,...,k−1(cil+1 − dil

) > Lε then fε has a critical point uε

located near some uθ1 + . . .+ uθk
with θl ∈ Uil

for l = 1, . . . , k.

As a consequence of theorem 2 we have the following corollary:

Corollary 2 For all k there exists ε > 0 such that ∀ε ∈ (−ε, 0)∪ (0, ε) equation (2.1) has infinitely
many k-bump solutions.

However the constants Lε and ε given by theorem 2 can depend on the number of bumps k so
that theorem 2 cannot be directly used to obtain the existence of solutions with infinitely many
bumps. The bound that we obtain for ||uε−

∑k
i=1uθi

|| is not independent of the number of bumps
k. We will show in the next section how to derive estimates independent of k by using a different
norm. We shall find solutions uε close to

∑
uθi

only in L∞-norm but not in H1-norm. See also
[17].
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3 Existence of solutions with infinitely many bumps

In this section we show how to modify the previous lemmas in order to obtain constants ε and Lε

independent of the number of bumps k.
In the sequel the symbol θ will mean θ = (θ1, . . . , θk) ∈ IRk. We consider the manifold

Zk
L = {uL

θ1
+ . . .+ uL

θk
| mini(θi+1 − θi) > L}.

Its tangent space at uL
θ1

+ . . .+ uL
θk

is 〈u̇L
θ1
, . . . , u̇L

θk
〉.

For any θ1 < . . . < θk we will consider the norm on E:

|u|2θ = maxi=1,...,k

∫
Ii

|u|2 + |u̇|2

where
I1 = (

−θ1 − θ2
2

,+∞), Ii = (
−θi+1 − θi

2
,
−θi − θi−1

2
) and Ik = (−∞,

−θk − θk−1

2
). In the

sequel || · || will still denote the H1-norm.
Since for every u ∈ E we have

|u|2θ ≤ ||u||2 ≤ k|u|2θ,
the norm | · |θ is equivalent to the H1-norm for fixed k. Moreover the following uniform bound can
be easily proved : ∀k ∈ IN, ∀(θ1, ..., θk) with mini(θi − θi−1) > 1:

||u||∞ ≤ 2|u|θ.

We now prove a property of the norm | · |θ which will be useful later. We use the convention
θi−1 = −∞ if i = 1 and θi+1 = +∞ if i = k.

Lemma 7 Let θ = (θ1, . . . , θk) ∈ IRk satisfy mini(θi+1 − θi) > 8. For all X ∈ E there exist
i ∈ {1, . . . , k} and Y ∈ E such that supp Y ⊂ [−(θi + θi+1)/2− 2,−(θi + θi−1)/2 + 2] and

(Pθ) ||Y || ≤ 1 and |X|θ ≤ 5(X,Y ).

Proof: Let mi,i+1 = −(θi + θi+1)/2. By the definition of | · |θ, there is i such that |X|θ =
||X||W 1,2(mi,i+1,mi,i−1). Now let R be the function defined by R = 1 on [mi,i+1,mi,i−1] , R = 0
outside (mi,i+1−2,mi,i−1+2), R is continuous and linear on each component of [mi,i+1−2,mi,i−1+
2]\(mi,i+1,mi,i−1). We have:

(X,RX) =
∫

IR

R|Ẋ|2 +R|X|2 + ṘXẊ

≥
∫ mi−1,i

mi,i+1

|Ẋ|2 + |X|2 −
∫ mi,i+1

mi,i+1−2

1
2
|Ẋ||X| −

∫ mi−1,i+2

mi−1,i

1
2
|Ẋ||X|

≥ |X|2θ −
1
4
|X|2θ −

1
4
|X|2θ =

1
2
|X|2θ

(We just use here that 1/2|Ẋ||X| ≤ 1/4(|Ẋ|2 + |X|2)).

By the same way we easily get
||RX||2 ≤ 5|X|2θ.

Now set Y = (1/||RX||)RX. We get (X,Y ) ≥ (1/2
√

5)|X|θ and the proof of lemma 7 is complete.2

We are going to state some easy properties of f0, fε, G which will be required in the sequel. The
proofs of these properties can be found in the appendix.
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Lemma 8 ∀b > 0 ∃C(b) > 0 such that: ∀ε with |ε| < 1, ∀s, r, v ∈ E with ||s||∞, ||r||∞ ≤ b we
have:

• (i) |fε(s+ r)− fε(s)− fε(r)| ≤ C(b)
∫

IR
|ṙ||ṡ|+ |r||s|;

• (ii) |(f ′ε(s+ r)− f ′ε(r), v)| ≤ C(b)
∫

IR
|ṡ||v̇|+ |s||v|.

Lemma 9 There is a positive constant C4 such that for all L > 8, ∀k, ∀(θ1, ..., θk) ∈ IRk with
mini(θi − θi−1) > L, ∀v ∈ E such that |v|θ ≤ 1 we have:

• (i) |f ′0(uL
θ1

+ . . .+ uL
θk

+ v)|θ ≤ C4;

• (ii) |G′(uL
θ1

+ . . .+ uL
θk

+ v)|θ ≤ C4;

• (iii) |f ′′0 (uL
θ1

+ . . .+ uL
θk

+ v)X|θ ≤ C4|X|θ, ∀X ∈ E;

• (iv) |G′′(uL
θ1

+ . . .+ uL
θk

+ v)X|θ ≤ C4|X|θ, ∀X ∈ E.

Moreover there is a function r satisfying lims→0 r(s) = 0 such that ∀L > 8, ∀k, ∀(θ1, ..., θk) ∈
IRk with mini θi+1 − θi > L, ∀v ∈ E

• (v) |(f ′′0 (uL
θ1

+ . . .+ uL
θk

+ v)− f ′′0 (uL
θ1

+ . . .+ uL
θk

))X|θ ≤ r(|v|θ)|X|θ.

Lemma 10 • (i) There is a positive constant C6 such that

||u0 − uL
0 ||+ ||u̇0 − u̇L

0 ||+ ||ü0 − üL
0 || = O(exp(−C6L));

• (ii) There is a positive constant C7 such that for all L > 8, for all k, for all (θ1, . . . , θk)
with mini(θi+1 − θi) > L one has:

|f ′0(uL
θ1

+ . . .+ uL
θk

)|θ = O(exp(−C7L));

• (iii) For all L > 8, for all θ ∈ IRk such that mini(θi+1 − θi) > L, for all v ∈ E with |v|θ ≤ 1

|f ′′0 (uL
θ1

+ . . .+ uL
θk

+ v)(λ1u̇
L
θ1

+ . . .+ λku̇
L
θk

)|θ = O(max
i
|λi|).

Moreover if D2V is locally Lipschitz continuous then:

|f ′′0 (uL
θ1

+ . . .+ uL
θk

+ v)(λ1u̇
L
θ1

+ . . .+ λku̇
L
θk

)|θ = max
i
|λi|O(|v|θ + exp(−C8L))

where C8 is some positive constant.

3.1 The natural constraint Zk
L,ε

First we prove a version of lemma 1 in which δ0 is independent of k. For δ > 0 let:

V δ,k
L = {(v, θ) ∈ E × IRk | mini(θi+1 − θi) > L, v ∈ 〈u̇L

θ1
, . . . , u̇L

θk
〉⊥ , |v|θ < δ}.

Let hL : V δ,k
L → E be defined by hL(v, θ1, . . . , θk) = uL

θ1
+ . . .+ uL

θk
+ v.

We shall denote by | · |θ also the norm on E × IRk defined by:

|(X,µ1, . . . , µk)|θ = max{|X|θ, |µ1|, . . . , |µk|}.
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Lemma 11 There is δ0 > 0 such that, if L > 8 then ∀k ∈ IN, hL is a diffeomorphism from V δ0,k
L

onto a neighborhood of Zk
L.

Proof:
It goes along the lines of the proof of lemma 1. We use here the new norm | · |θ in order to have

constants independent of k in the estimates.
Let Uδ,k

L = {(v, θ1, . . . , θk) ∈ E × IRk | mini(θi+1 − θi) > L , |v|θ < δ}.
Let ΨL : Uδ,k

L → E × IRk be defined by:

ΨL(θ, v) = (uL
θ1

+ . . .+ uL
θk

+ v, (u̇L
θ1
, v), . . . , (u̇L

θk
, v)).

(i) We first prove that there is δ0 > 0 such that if L > 8 then for all k, ΨL is a local
diffeomorphism on Uδ0,k

L . Indeed we have:

d(v,θ)ΨL(X,λ1, . . . , λk) = (λ1u̇
L
θ1

+ . . .+λku̇
L
θk

+X, (u̇L
θ1
, X)+λ1(üL

θ1
, v), . . . , (u̇L

θk
, X)+λk(üL

θk
, v)).

Let B denote the linear operator defined on E × IRk by:

B(X,λ1, . . . , λk) = (X + λ1u̇
L
θ1

+ . . .+ λku̇
L
θk
, (X, u̇L

θ1
), . . . , (X, u̇L

θk
)).

Since
supp üL

θi
⊂ Ii = [−(θi+1 + θi)/2,−(θi + θi−1)/2] (3.1)

we have: |(üL
θi
, v)| ≤ ||üL

θi
|| · |v|θ. Hence as in the proof of lemma 1:

|(d(v,θ)ψ
L −B)(X,λ1, . . . , λk)|θ ≤ δ0C|(X,λ1, . . . , λk)|θ. (3.2)

For all X ∈ E we can write X = Y + µ1u̇
L
θ1

+ . . .+ µku̇
L
θk

where Y ∈ 〈u̇L
θ1
, . . . , u̇L

θk
〉⊥. Thus

|B(X,λ1, . . . , λk)|θ = max(|Y + (µ1 + λ1)u̇L
θ1

+ . . .+ (µk + λk)u̇L
θk
|θ, ||u̇L

0 ||2|µ1|, . . . , ||u̇L
0 ||2|µk|).

Now we have

|Y + (µ1 + λ1)u̇L
θ1

+ . . .+ (µk + λk)u̇L
θk
|θ = maxi(||Y + (µi + λi)u̇L

θi
||W 1,2(Ii)).

Moreover, since Y and u̇L
θi

are orthogonal in W 1,2(Ii):

||Y + (µi + λi)u̇L
θi
||W 1,2(Ii) ≥

1
2
(||Y ||W 1,2(Ii) + |µi + λi|||u̇L

0 ||).

Hence
|Y + (µ1 + λ1)u̇L

θ1
+ . . .+ (µk + λk)u̇L

θk
|θ ≥ C ′(|Y |θ + maxi|µi + λi|)

and as in the proof of lemma 1 we get:

|B(X,λ1, . . . , λk)|θ ≥ C ′′|(X,λ1, . . . , λk)|θ. (3.3)

Choosing δ0 > 0 such that δ0C < C ′′/2 we get by (3.2) and (3.3) that for all k, for all L > 8,
for all (v, θ1, . . . , θk) ∈ Uδ0,k

L

|d(v,θ1,...,θk)ψ
L(X,λ1, . . . , λk)|θ ≥

C ′′

2
|(X,λ1, . . . , λk)|θ. (3.4)
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Since d(v,θ1,...,θk)ψ
L has the form “Id + compact” we derive from (3.4) that it is an isomorphism

and ψL is a local diffeomorphism on Uδ0,k
L .

(ii) We must justify that, provided δ0 is small enough, ψL is injective on Uδ0,k
L . We have that

for all γ > 0 there is η > 0 independent of k, L > 8, such that for all (v, θ1, . . . , θk),
(v′, θ′1, . . . , θ

′
k) in Uδ0,k

L max(|v − v′|θ, |θ1 − θ′1|, . . . , |θk − θ′k|) < η implies

|(d(v,θ1,...,θk)ψ
L − d(v′,θ′1,...,θ′

k
)ψ

L)(X,λ1, . . . , λk)|θ < γ|(X,λ1, . . . , λk)|θ.

This property can be easily checked using the fact that for η small enough and L > 8, |θi−θ′i| < η
implies supp uL

θi
∪ supp uL

θ′
i
⊂ Ii and that u̇L

θi
−u̇L

θ′
i
→ 0, üL

θi
−üL

θ′
i
→ 0 as |θi−θ′i| → 0 independently

of L > 8.
This uniform continuity property combined with (3.4) yields the existence of ν > 0 ( indepen-

dent of L, k) such that:

0 < max(|v − v′|θ, |θ1 − θ′1|, . . . , |θk − θ′k|) < ν ⇒ ψL(v, θ1, . . . , θk) 6= ψL(v, θ′1, . . . , θ
′
k).

The proof of injectivity ( provided δ0 is small enough ) now presents no difference with that given
in lemma 1, so we omit it. 2.

As in section 2 we consider the following function:

HL : IR× IRk × E × IRk → E × IRk

with components HL
1 ∈ E and HL

2 ∈ IRk given by:

HL
1 (ε, θ1, . . . , θk, v, α1, . . . , αk) = f ′ε(u

L
θ1

+ . . .+ uL
θk

+ v)−
∑i=k

i=1
αiu̇

L
θi
,

HL
2 (ε, θ1, . . . , θk, v, α1, . . . , αk) = ((v, u̇L

θ1
), . . . , (v, u̇L

θk
)).

We prove here a modified version of lemma 2 in which the constants can be taken independent
of k.

Lemma 12 There exist positive constants C9, L1 such that for all L > L1,∀k, for all θ = (θ1, . . . , θk)
with mini(θi − θi−1) > L and for all (X,µ1, . . . , µk):∣∣∣∣∣ ∂HL

∂(v, α) |(0,θ,0)

(X,µ1, . . . , µk)

∣∣∣∣∣
θ

≥ C9|(X,µ1, . . . , µk)|θ. (3.5)

Proof:
Arguing by contradiction we assume that the statement in lemma 12 does not hold.
Then we can define sequences Ln, kn, θn = (θn

1 , . . . , θ
n
kn

), (Xn, µ
n
1 , . . . , µ

n
kn

) ∈ E × IRkn such
that Ln → +∞, mini(θn

i+1 − θn
i ) > Ln, |(Xn, µ

n
1 , . . . , µ

n
kn

)|θn = 1, and:∣∣∣∣∣ ∂HLn

∂(v, α) |(0,θn,0)

(Xn, µ
n
1 , . . . , µ

n
kn

)

∣∣∣∣∣
θn

→ 0, (3.6)

which means:

|f0′′(uLn

θn
1

+ . . .+ uLn

θn
kn

)Xn −
i=kn∑
i=1

µn
i u̇

Ln

θn
i
|θn → 0 (3.7)
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and
maxi=1,...,kn |(Xn, u̇

Ln

θn
i

)| → 0. (3.8)

By the definition of |(Xn, µ
n
1 , . . . , µ

n
kn

)|θn there is in ∈ {1, . . . , kn} such that

1 ≤ ||Xn||W 1,2(In
in

) + |µn
in
| ≤ 2 (3.9)

where In
in

= (−(θn
in

+ θn
in+1)/2,−(θn

in
+ θn

in−1)/2).
Using the invariance of f0 and of the scalar product (·, ·) under the action of IR we can assume

that θn
in

= 0 for any n. Hence [−Ln/2, Ln/2] ⊂ In
in

. Define a sequence Rn of cut-off functions such
that Rn(IR) ⊂ [0, 1], Rn = 1 on In

in
, Rn = 0 outside In

in
+ [−2, 2] and Rn is continuous and linear

on each component of (In
in

+ [−2, 2])\In
in

. Set Yn = RnXn.
As in the proof of lemma 7 we have

||Yn||2 ≤ 5|Xn|2θn ≤ 5.

Hence up to a subsequence Yn ⇀ X ∈ E. Note that Xn = Yn on [−Ln/2, Ln/2] and
limn→+∞ Ln = +∞. As a consequence Xn → X in L2

loc(IR).
Since |µn

in
| is bounded we can also assume that µn

in
→ µ ∈ IR. We are going to show that X = 0

and µ = 0.
Let g ∈ E be fixed and have its support in a compact interval J . We have from (3.7) that:

(f0′′(uLn

θn
1

+ . . .+ uLn

θn
kn

)Xn, g)−
∑i=kn

i=1
µn

i (u̇Ln

θn
i
, g) → 0. (3.10)

Now for n large enough supp g ⊂ In
in

, which implies that supp g ∩ supp uLn

θn
i

= ∅ for i 6= in.
Hence, since θin

= 0, (3.10) is equivalent to:

(Xn, g)−
∫

IR

D2V (uLn
0 )Xng − µn

in
(u̇Ln

0 , g) → 0. (3.11)

We have uLn
0 → u0 in L∞. Hence, by the uniform continuity of D2V on bounded subsets of IRn,

D2V (uLn
0 ) → D2V (u0) in L∞. Therefore since Xn → X in L2

loc(IR) and g is compactly supported,∫
IR

D2V (uLn
0 )Xng →

∫
IR

D2V (u0)Xg.

Furthermore µn
1 (u̇Ln

0 , g) → µ(u̇0, g) and for n large enough (Xn, g) = (Yn, g). So (Xn, g) →
(X, g) and we can derive from (3.11):

(X, g) +
∫

IR

D2V (u0)Xg − µ(u̇0, g) = 0. (3.12)

Since this equality holds for all g ∈ E with compact support we get:

f ′′0 (u0)X = µu̇0. (3.13)

Since f ′′0 is symmetric and u̇0 ∈ ker f ′′0 (u0) (3.13) implies that µ = 0 and X ∈ ker f ′′0 (u0) = TZu0 =
IRu̇0. Now from (3.8):

(Yn, u̇
Ln
0 ) = (Xn, u̇

Ln
0 ) → 0.

Hence (X, u̇0) = 0 Finally we get X = 0.
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To get a contradiction we write that from (3.7)

(f ′′0 (uLn
0 + . . .+ uLn

θn
kn

)Xn, Yn)−
∑i=kn

i=1
µn

in
(u̇Ln

θn
i
, Yn) → 0

which implies, since supp Yn ∩ supp uLn

θn
i

= ∅ for i 6= in and (Yn, u̇
Ln
0 ) → 0:

(Xn, Yn)−
∫

IR

D2V (uLn
0 )XnYn → 0. (3.14)

Now XnYn = RnX
2
n is bounded in L1 norm and tends to 0 in L1

loc. Moreover using that
D2V (0) = 0, |uLn

0 (t)| ≤ |u0(t)| and |u0(t)| → 0 as |t| → +∞ we can write

||D2V (uLn
0 )||L∞[−A,A]c ≤ CA

with limA→∞ CA = 0.
Hence: ∫

IR

D2V (uLn
0 )XnYn → 0.

This latter limit and (3.14) implies that (Xn, Yn) → 0.
Now

(Xn, Yn) =
∫

In
in

+[−2,2]

Rn|Ẋn|2 +Rn|Xn|2 + ṘnẊnXn

≥ ||Xn||2W 1,2(In
in

) −
1
4
||Xn||2W 1,2(In

in−1)
− 1

4
||Xn||2W 1,2(In

in+1)

≥ ||Xn||2W 1,2(In
in

) −
1
2
|Xn|2θn ≥ ||Xn||2W 1,2(In

in
) −

1
2
.

This contradicts (Xn, Yn) → 0 because of (3.9) and the fact that µn
in
→ 0. 2

Remark 7 By lemma 9-(iv)-(v) it is clear that lemma 12 implies the following properties of HL:
Provided δ0 and ε0 are small enough we have:

• (i) For all L > L1, for all ε ∈ (−ε0, ε0), for all θ ∈ IRk such that mini(θi+1 − θi) > L, for all

v ∈ E with |v|θ < δ0,
∂HL

∂(v, α) |(ε,θ,v)

is an isomorphism and:

∣∣∣∣∣∣
[
∂HL

∂(v, α) |(ε,θ,v)

]−1

(X,µ1, . . . , µk)

∣∣∣∣∣∣
θ

≤ 2
C9

|(X,µ1, . . . , µk)|θ.

• (ii) For all L > L1, for all ε ∈ (−ε0, ε0), for all θ ∈ IRk such that mini(θi+1 − θi) > L, for
all v, v′ ∈ E such that |v|θ, |v′|θ < δ0, for all α, α′ ∈ IRk

|HL(ε, θ, v, α)−HL(ε, θ, v′, α′)|θ ≥
C9

2
|(v − v′, α− α′)|θ.

22



Remark 8 It can be readily checked that if a sequence wn with wn ∈ E is bounded in L∞ and
converges in W 1,2

loc then f ′ε(wn) converges in W 1,2
loc and is bounded in L∞. Hence it makes sense to

define f ′ε(u) ∈W
1,2
loc ∩ L∞ for u ∈W 1,2

loc ∩ L∞.
Let (. . . , θ−k, . . . , θ0, . . . , θk, . . .) be an infinite sequence such that θi+1 − θi > L. We can still

define the norm | · |θ. Note that
∑i=+∞

i=−∞u
L
θi
∈W 1,2

loc ∩ L∞ and that |
∑i=+∞

i=−∞u
L
θi
|θ = ||uL

0 ||.
It is easy to see using property (Pθ) of lemma 7 that if |v|θ < +∞ then |f ′ε(

∑i=+∞
i=−∞u

L
θi

+
v)|θ < +∞. Now since in remark 7-(ii) the estimate is independent of k it clearly implies that if
v, v′ ∈W 1,2

loc satisfies |v|θ, |v′|θ < δ0 and ∀i ∈ ZZ, (v, u̇L
θi

) = (v′, u̇L
θi

) = 0 then

|f ′ε(
∑

i∈ZZ
uL

θi
+v)−

∑
i∈ZZ

αiu̇
L
θi
−f ′ε(

∑
i∈ZZ

uL
θi

+v′)+
∑

i∈ZZ
βiu̇

L
θi
|θ ≥

C9

2
(|v−v′|θ +sup

i
|αi−βi|).

Lemma 3 of section 2 can be modified in such a way that L2 does not depend on k. We have:

Lemma 13 There exists L2 ≥ L1 such that for all L > L2, for all k there exist C1 functions w(L, ·)
and αi(L, ·) defined on {θ ∈ IRk | mini(θi+1−θi) > L} such that w(L, θ1, . . . , θk) ∈ 〈u̇L

θ1
, . . . , u̇L

θk
〉⊥,

|w(L, θ1, . . . , θk)|θ ≤ δ0 and

f ′0(u
L
θ1

+ . . .+ uL
θk

+ w(L, θ1, . . . , θk)) =
k∑

i=1

αi(L, θ)u̇L
θi
. (3.15)

Moreover there are constants C10 and C11 such that |w(L, θ1, . . . , θk)|θ = O(exp(−C10L)) and
maxi |αi(L, θ)| = O(exp(−C11L)).

Proof:
The existence proof is exactly the same as for lemma 3. The only change is that we use for

each θ = (θ1, . . . , θk) the norm | · |θ to get the existence of w(L, θ1, . . . , θk).
The C1 regularity of w and of αi is as for lemma 3 a consequence of the implicit function

theorem since for any fixed k the | · |θ norm is equivalent to the || · || norm.
So it remains to justify the estimates on |w|θ and |αi|.

The functions w,α = (α1, . . . , αk) are defined by the equation HL(0, θ, w, α) = 0. Therefore, by
remark 7,

| −HL(0, θ, 0, 0)|θ = |HL(0, θ, w, α)−HL(0, θ, 0, 0)|θ ≥
C9

2
|(w,α1, . . . , αk)|θ.

Hence
|(w,α1, . . . , αk)|θ ≤

2
C9

|HL(0, θ, 0, 0)|θ.

Now by lemma 10

|HL(0, θ, 0, 0)|θ = |f ′0(uL
θ1

+ · · ·+ uL
θk

)|θ = O(exp(−C7L))

and we get the estimates. 2

Now we can state another lemma analogous to lemma 4.

Lemma 14 There exists ε1 > 0 such that for every k, for every L > L2 there exist C1 functions
w̄(L, ·) and α̃i(L, ·) (1 ≤ i ≤ k) defined on (−ε1, ε1) × {(θ1, . . . , θk) | mini(θi+1 − θi) > L} such
that:
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• w̄(L, 0, θ1, . . . , θk) = 0;

• f ′ε(u
L
θ1

+ . . .+ uL
θk

+ w(L, θ1, . . . , θk) + w̄(L, ε, θ1, . . . , θk)) =
∑k

i=1 α̃i(L, ε, θ)u̇L
θi

;

• w̄(L, ε, θ1, . . . , θk) ∈ 〈u̇L
θ1
, . . . , u̇L

θk
〉⊥, |w̄(L, ε, θ1, . . . , θk)|θ < δ0.

Moreover there exist positive constants C12 and C13 such that, for all L, for all k, for all
(θ1, . . . , θk) such that mini(θi+1 − θi) > L, |w̄(L, ε, θ1, . . . , θk)|θ ≤ C12|ε|, maxi |α̃i(L, ε, θ)| ≤
C12|ε|+O(exp(−C13L)).

We will use also the notations w̄ε(L, θ1, . . . , θk) = w̄(L, ε, θ1, . . . , θk) and w̃ε(L, θ) = w(L, θ) +
w̄ε(L, θ).

Proof: As for lemma 13, the existence and C1 regularity proof can be easily carried out by
the contraction mapping theorem and the implicit function theorem, using remark 7 and lemma
9-(iv)-(v). We will only justify the estimates on |w̄ε(L, θ)|θ and on |α̃i(L, ε, θ)|.
In fact by remark 7

|HL(0, θ, w̃ε(L, θ), α̃(L, ε, θ))−HL(0, θ, w(L, θ), α(L, θ))|θ ≥
C9

2
|(w̄(L, ε, θ); α̃(L, ε, θ)− α(L, θ))|θ.

Now
HL(0, θ, w(L, θ), α(L, θ)) = 0

and
|HL(0, θ, w̃(L, ε, θ), α̃(L, ε, θ))|θ = |εG′(uL

θ1
+ . . .+ uL

θk
+ w̃(L, ε, θ))|θ.

The desired estimates follow by lemma 9-(ii).2

Finally, for L > L2 and |ε| < ε1, we define:

Zk
L,ε = {uL

θ1
+ . . .+ uL

θk
+ w(L, θ1, . . . , θk) + w̄(L, ε, θ1, . . . , θk) | mini(θi+1 − θi) > L}.

By lemma 11 Zk
L,ε is a C1 k-dimensional submanifold of E diffeomorphic to Zk

L.
Now it is easy to show that:

Lemma 15 Zk
L,ε is a natural constraint for fε.

We finish this subsection with a lemma providing an estimate on ∂θw̃ε which will be used later.

Lemma 16 For L > L2 and θ ∈ IRk such that mini(θi+1 − θi) > L, for ε ∈ (−ε1, ε1), for all
(λ1, . . . , λk) ∈ IRk: ∣∣∣∣λ1

∂w̃ε

∂θ1
(L, θ) + . . .+ λk

∂w̃ε

∂θk
(L, θ)

∣∣∣∣
θ

= O(max
i
|λi|).

Moreover if D2V is locally Lipschitz continuous then we have the sharper estimate:∣∣∣∣λ1
∂w̃ε

∂θ1
+ . . .+ λk

∂w̃ε

∂θk

∣∣∣∣
θ

= O(ε+ exp(−C14L))max
i
|λi|

for some positive constant C14.
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Proof: By the implicit function theorem we have:

(
∂w̃ε

∂θi
,
∂α̃ε

∂θi
) = −[

∂HL

∂(v, α)
]−1 ∂H

L

∂θi
(ε, θ, w̃ε, α̃ε).

Hence using remark 7 we can obtain:∣∣∣∣λ1
∂w̃ε

∂θ1
+ . . .+ λk

∂w̃ε

∂θk

∣∣∣∣
θ

≤ 2
C9

∣∣∣∣∣
k∑

i=1

λi
∂HL

∂θi
(ε, θ, w̃ε, α̃ε)

∣∣∣∣∣
θ

. (3.16)

Now
k∑

i=1

λi
∂HL

1

∂θi
(ε, θ, w̃ε, α̃ε) = f ′′0 (uL

θ1
+ . . .+ uL

θk
+ w̃ε)(

k∑
i=1

λiu̇
L
θi

)−
k∑

i=1

λiα̃ε,iü
L
θi
.

Hence by lemma 10-(iii) and the estimate on maxi |α̃i,ε| we can write∣∣∣∣∣
k∑

i=1

λi
∂HL

1

∂θi
(ε, θ, w̃ε(L, θ), α̃ε(L, θ))

∣∣∣∣∣
θ

= O(max
i
|λi|).

Moreover, if D2V is locally Lipschitz continuous, then, by the estimate on |w̃ε|θ, we have:∣∣∣∣∣
k∑

i=1

λi
∂HL

1

∂θi
(ε, θ, w̃ε(L, θ), α̃ε(L, θ))

∣∣∣∣∣
θ

= max
i
|λi|O(ε+ exp(−CL))

for some positive constant C. Furthermore

k∑
i=1

λi
∂HL

2

∂θi
= (λ1(üL

θ1
, w̃ε), . . . , λk(üL

θk
, w̃ε))

and |(üL
θi
, w̃ε)| ≤ ||üL

θi
|| · |w̃ε|θ = O(ε+ exp(−C ′L)) by lemmas 13 and 14. Finally we get∣∣∣∣∣

k∑
i=1

λi
∂HL

∂θi
(ε, θ, w̃ε, α̃ε)

∣∣∣∣∣
θ

= O(max
i
|λi|)

and if D2V is locally Lipschitz continuous then∣∣∣∣∣
k∑

i=1

λi
∂HL

∂θi
(ε, θ, w̃ε, α̃ε)

∣∣∣∣∣
θ

= O(ε+ exp(−C ′′L))max
i
|λi|.

From (3.16) we get the desired estimates.

3.2 Expression of fε on Zk
L,ε

By lemma 15 we are led, in order to find k-bump solutions and then solutions with an infinite
number of bumps, to look for the critical points of the functional fε restricted to the k-dimensional
manifold Zk

L,ε.
We will need the following lemma, whose proof is given in the appendix:
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Lemma 17 There is a positive constant C15 such that for all θ = (θ1, . . . , θk) ∈ IRk with mini(θi+1−
θi) > L:

∀i ∈ {1, . . . , k − 1} ||w̃ε(L, θ)||W 1,2(Ji) = O(exp(−C15(θi+1 − θi)))

where Ji = (−(θi + θi+1)/2− 2,−(θi + θi+1)/2 + 2).

In the next lemma we find a suitable expression for the functional fε restricted to Zk
L,ε.

Lemma 18 For all |ε| < ε1, for all L > L2, for all k, for all (θ1, . . . , θk) ∈ IRk with mini(θi+1 −
θi) > L there results:

fε(uL
θ1

+ . . .+ uL
θk

+ w(L, θ) + w̄ε(L, θ)) = kb+ ε(G(uθ1) + . . .+G(uθk
)) + β(L, ε, θ) (3.17)

where β has the following property: there is a positive constant C16 such that, if θ′i satisfies θ′i −
θi−1 > L and θi+1 − θ′i > L then

|β(L, ε, θ1, . . . , θi−1, θ
′
i, θi+1, . . . , θk)− β(L, ε, θ1, . . . , θi−1, θi, θi+1, . . . , θk)|

= O(exp(−C16L)) + εoε,L(1). (3.18)

Proof:
For the sake of simplicity we shall give the proof of (3.18) for i = 1 only.
Let φ ∈ C∞(IR, [0, 1]) satisfy: φ = 0 on (−∞,−1], φ = 1 on [1,+∞), |φ̇| ≤ 1 on IR.
We shall use the abbreviations: S = uL

θ2
+ . . .+ uL

θk
and φ1(·) = φ( θ1+θ2

2 + ·).
We first prove:

β(L, ε, θ1, . . . , θk) = fε(uL
θ1

+ φ1(w + w̄ε)) + fε(S + (1− φ1)(w + w̄ε))
− ε(G(uθ1) + . . .+G(uθk

))− kb+O(exp(−CL)). (3.19)

Indeed
β(L, ε, θ1, . . . , θk) = fε(uL

θ1
+ S + w + w̄ε)− ε(G(uθ1) + . . .+G(uθk

))− kb.

Moreover we can write

fε(uL
θ1

+ S + w + w̄ε) = fε(uL
θ1

+ φ1(w + w̄ε)) + fε(S + (1− φ1)(w + w̄ε)) + r(L, ε, θ1, . . . , θk).

By lemma 8-(i), using that supp uL
θi
⊂ [−θi − L/4,−θi + L/4], we have that

|r(L, ε, θ1, . . . , θk)| ≤ C

∫
IR

| d
dt

(uL
θ1

+ φ1(w + w̄ε))||
d

dt
(S + (1− φ1)(w + w̄ε))|

+ C

∫
IR

|uL
θ1

+ φ1(w + w̄ε)||S + (1− φ1)(w + w̄ε)|

≤ C

∫
IR

| d
dt

(φ1(w + w̄ε))||
d

dt
((1− φ1)(w + w̄ε))|+ |φ1(w + w̄ε)||(1− φ1)(w + w̄ε)|.

Since (supp d
dt (φ1(w + w̄ε)) ∩ supp d

dt ((1− φ1)(w + w̄ε))) ⊂ [−(θ1 + θ2)/2− 1,−(θ1 + θ2)/2 + 1],
by lemma 17∫

IR

| d
dt

(φ1(w + w̄ε))||
d

dt
((1− φ1)(w + w̄ε))| = O(exp(−C(θ2 − θ1))) = O(exp(−CL)).
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We get the same estimate for
∫

IR
|φ1(w + w̄ε)||(1− φ1)(w + w̄ε)|.

Hence we derive that |r(ε, θ1, . . . , θk)| = O(exp(−CL)) and (3.19) holds.

We now prove:
fε(uL

θ1
+ φ1(w + w̄ε))− εG(uθ1) = b+O(exp(−CL) + ε2). (3.20)

We recall that b is the critical level of f0 associated to the critical point u0. Indeed,

fε(uL
θ1

+ φ1(w + w̄ε))− εG(uθ1) = f0(uL
θ1

+ φ1(w + w̄ε)) + εG(uL
θ1

+ φ1(w + w̄ε))− εG(uθ1).

As in the proof of lemma 6 we can write:

f0(uL
θ1

+ φ1(w + w̄ε)) = f0(uL
θ1

) + (f ′0(u
L
θ1

), φ1(w + w̄ε)) +O(||φ1(w + w̄ε)||2).

Since supp φ1 ⊂ (−(θ1 + θ2)/2 + 1,+∞) by lemmas 13 and 14 we get:

||φ1(w + w̄ε)||2 = O(|w + w̄ε|2θ) = O(ε2 + exp(−CL)).

Moreover by lemma 10-(i)

(f ′0(u
L
θ1

), φ1(w + w̄ε)) = (f ′0(uθ1), φ1(w + w̄ε)) +O(||uθ1 − uL
θ1
||||φ1(w + w̄ε)||)

= O(exp(−CL)(ε+ exp(−CL))) = O(exp(−CL))

and
f0(uL

θ1
) = f0(uθ1) +O(||uL

θ1
− uθ1 ||) = b+O(exp(−CL)).

Hence
f0(uL

θ1
+ φ1(w + w̄ε)) = b+O(ε2 + exp(−CL)). (3.21)

In addition

ε(G(uL
θ1

+ φ1(w + w̄ε))−G(uθ1)) = ε(G(uL
θ1

)−G(uθ1)) + εO(||φ1(w + w̄ε)||)
= ε(O(||uθ1 − uL

θ1
||) +O(|w + w̄ε|θ))

= εO(ε+ exp(−CL)) = O(ε2 + exp(−C ′L)).

From (3.21) and the latter formula we get (3.20).

Combining (3.19) and (3.20) we derive

β(L, ε, θ1, . . . , θk) = fε(S+(1−φ1)(w+w̄ε))−(k−1)b−ε(G(uθ2)+. . .+G(uθk
))+O(exp(−CL)+ε2).

(3.22)
(θ2, . . . , θk) being fixed set γ(θ1) = fε(S+(1−φ1)(w+ w̄ε)). In order to estimate γ(θ1)−γ(θ′1)

we are going to compute
∂γ

∂θ1
(θ1). Since

∂

∂θ1
(φ1) =

1
2
φ̇1 we have:

∂γ

∂θ1
(θ1) = (f ′ε(S + (1− φ1)(w + w̄ε)),−

1
2
φ̇1(w + w̄ε) + (1− φ1)

∂

∂θ1
(w + w̄ε)).

Since supp φ̇1 ⊂ [−(θ1 + θ2)/2− 1,−(θ1 + θ2)/2 + 1] we have that

|(f ′ε(S + (1− φ1)(w + w̄ε)),−
1
2
φ̇1(w + w̄ε))| ≤ C|f ′ε(S + (1− φ1)(w + w̄ε))|θ|φ̇1(w + w̄ε)|θ.
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Therefore by lemmas 9 and 17

|(f ′ε(S + (1− φ1)(w + w̄ε)),−
1
2
φ̇1(w + w̄ε))| = O(exp(−C(θ2 − θ1))). (3.23)

We can write:

(f ′ε(S+(1−φ1)(w+w̄ε)), (1−φ1)
∂

∂θ1
(w+w̄ε)) = (f ′ε(u

L
θ1

+S+w+w̄ε), (1−φ1)
∂

∂θ1
(w+w̄ε))+s(ε, θ1, . . . , θk)

where, by lemma 8-(ii),

|s(ε, θ1, . . . , θk)| ≤ C

∫
IR

| d
dt

(φ1(w+w̄ε))||
d

dt
((1−φ1)

∂

∂θ1
(w+w̄ε))|+|φ1(w+w̄ε)||(1−φ1)

∂

∂θ1
(w+w̄ε)|.

Since supp φ1 ∩ supp (1− φ1) ⊂ [−(θ1 + θ2)/2− 1,−(θ1 + θ2)/2 + 1] we get by lemma 17

|s(θ1, . . . , θk, ε)| = O(exp(−C(θ2 − θ1)))|
∂

∂θ1
(w + w̄ε)|θ.

Hence by lemma 16
|s(θ1, . . . , θk, ε)| = O(exp(−C(θ2 − θ1))). (3.24)

Now we have f ′ε(u
L
θ1

+S+w+ w̄ε) =
∑k

i=1α̃ε,iu̇θi
. Using the properties of supp u̇L

θi
, supp φ1, supp

(1− φ1) we derive

(f ′ε(uθ1 + S + w + w̄ε), (1− φ1)
∂

∂θ1
(w + w̄ε)) =

∑k

i=1
α̃ε,i(u̇L

θi
, (1− φ1)

∂

∂θ1
(w + w̄ε))

=
∑k

i=2
α̃ε,i(u̇L

θi
,
∂

∂θ1
(w + w̄ε))

=
∑k

i=2
α̃ε,i

∂

∂θ1
(u̇L

θi
, w + w̄ε) = 0.

Combining (3.23) and (3.24) we get:

∂γ

∂θ1
(θ1) ≤ Cexp(−C ′(θ2 − θ1)).

Now let θ1 and θ′1 satisfy both θ2 − θ1 > L and θ2 − θ′1 > L. We can assume that θ′1 < θ1 .
Then

|γ(θ1)− γ(θ′1)| ≤
∫ θ1

θ′1

|∂γ(s)
∂θ1

|ds

≤
∫ θ1

θ′1

Cexp(−C ′(θ2 − s)) ds

≤ C ′′exp(−C ′(θ2 − θ1)).

Finally
|γ(θ1)− γ(θ′1)| = O(exp(−CL)). (3.25)

(3.22) and (3.25) imply the statement in lemma 18.2

We now show how to obtain k-bump solutions and then solutions with infinitely many bumps.
It is possible to prove that:
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Theorem 3 Let (V1),(V2),(W1) and condition 1 hold. Then there exists a positive constant C17

such that: ∀ω > 0 there exists ε2 > 0 such that ∀ε ∈ (−ε2, 0) ∪ (0, ε2), ∀k ∈ IN, ∀Ui1 =
(ci1 , di1), . . . , Uik

= (cik
, dik

) satisfying minl=1,...,k−1(cil+1 − dil
) > Lε := −C17ln|ε| there are

(θ1, . . . , θk) with θl ∈ Uil
= (cil

, dil
) and a solution uε of (2.1) which satisfies:

||uε −
∑k

l=1
uLε

θl
||L∞( IR) ≤ ω.

Proof: Choose 0 < ε2 < ε1 such that for |ε| < ε2, ε 6= 0 and L > Lε := −C17 ln |ε|, where
C17 = 2/C16, one has in formula (3.18)

|O(exp(−C16L)) + εoL,ε(1)| < |ε|η
2
. (3.26)

By lemma 13

∀k, ∀(θ1, . . . , θk) such that min
i

(θi+1 − θi) > L ||w(L, θ1, . . . , θk)||∞ = O(exp(−C10L)) (3.27)

and by lemma 14
||w̄ε(L, θ1, . . . , θk)||∞ ≤ 2C12|ε|.

Hence for ε small enough and L large enough we have, for all (θ1, . . . , θk) such that mini(θi+1−θi) >
L,

||w(L, θ1, . . . , θk)||∞ <
ω

2
and ||w̄ε(L, θ1, . . . , θk)||∞ <

ω

2
. (3.28)

We may assume that we have chosen ε2 small enough so that (3.28) is satisfied for all |ε| < ε2
and L > Lε . Assume that minl(cil+1 − dil

) > Lε for some i1 < . . . < ik.
Define the function of k real variables f̄ε by f̄ε(θ1, ..., θk) = fε(uLε

θ1
+. . .+uLε

θk
+w(Lε, θ1, . . . , θk)+

w̄ε(Lε, θ1, . . . , θk)). From now in this proof we assume, without loss of generality, that ε > 0.
f̄ε(θ1, ..., θk)|Ūi1×...×Ūik

attains its minimum at some point (θ̄1, . . . , θ̄k) ∈ Ūi1 × . . . × Ūik
. We

claim that (θ̄1, . . . , θ̄k) is in Ui1 × . . .× Uik
. By lemma 15, it implies that uε = uLε

θ̄1
+ . . .+ uLε

θ̄k
+

w(Lε, θ̄1, . . . , θ̄k) + w̄ε(Lε, θ̄1, . . . , θ̄k) is a solution of (2.1) which satisfies:

||uε −
∑k

l=1
uLε

θ̄il

||∞ ≤ ||w||∞ + ||w̄ε||∞ ≤ ω

2
+
ω

2
= ω.

Let us prove that, for example, θ̄1 6= di1 . We argue by contradiction. If θ̄1 = di1 , since
(di1 , θ̄2, . . . , θ̄k) is a minimum of f̄ε, we have:

f̄ε(di1 , θ̄2, . . . , θ̄k)− f̄ε(ai1 , θ̄2, . . . , θ̄k) ≤ 0. (3.29)

On the other hand by formula (3.17) and from (3.26) we get:

f̄ε(di1 , θ̄2, . . . , θ̄k)− f̄ε(ai1 , θ̄2, . . . , θ̄k) =

ε(Γ(di1)− Γ(ai1)) + (β(di1 , θ̄2, . . . , θ̄k)− β(ai1 , θ̄2, . . . , θ̄k)) ≥ εη − ε
η

2
= ε

1
2
η > 0,

a contradiction with (3.29).
Similarly we can prove that θ̄1 6= ci1 and that for any l, θ̄l /∈ ∂Uil

.
Therefore f̄ε has a minimum in Ui1 × . . .× Uik

and the proof is complete.2
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Remark 9 By the exponential decay properties of u0 the solution given by theorem 3 satisfies also
the estimate :

||uε −
∑k

l=1
uθil

||L∞( IR) ≤ 2ω,

provided ε is small enough.

Since Lε does not depend on k it is possible to get from the above theorem, arguing as in [17],
the existence of solutions with infinitely many bumps:

Theorem 4 Let (V1),(V2),(W1) and condition (1) hold. ∀ω > 0, there is ε2 > 0 such that ∀ε ∈
(−ε2, 0)∪(0, ε2), for any sequence of intervals (Uil

= (cil
, dil

))l∈J⊂ZZ satisfying inf l∈J(cil+1−dil
) >

Lε = −C17ln|ε|, there are (θl)l∈J with θl ∈ Uil
= (cil

, dil
) and a solution uε of (2.1) which satisfies:

||uε −
∑

l∈J
uLε

θl
||L∞( IR) ≤ ω.

If J is infinite, such a solution uε has infinitely many bumps.

3.3 Solutions with bumps located near minima and maxima of Γ.

In this subsection we indicate a different condition on the Melnikov primitive which allows to
find multibump homoclinic solutions of (2.1) with bumps located near maxima or minima of the
Melnikov primitive. The details are omitted for the sake of brevity.

Assume that:

Condition 2 There are η > 0 and a sequence (Un = (cn, dn))n∈ZZ of bounded open intervals of IR
which satisfy:

(i) For any n, either “Γ′(cn) > η and Γ′(dn) < −η” or “Γ′(cn) < −η and Γ′(dn) > η”;
(ii) cn → +∞ as n→ +∞ and dn → −∞ as n→ −∞.

Theorem 5 Let (V1),(V2),(W1) and condition 2 hold. Assume that D2V is locally Lipschitz con-
tinuous. Then the statements of theorems 3 and 4 hold.

We will not give the proof of theorem 5. We just specify that it is enough to prove that ∀|ε| < ε1,
∀k, ∀(θ1, . . . , θk) ∈ IRk with mini(θi − θi−1) > L one has:∣∣∣∣ ∂β∂θi

(L, ε, θ1, . . . , θk)
∣∣∣∣ = O(exp(−CL)) + εoε,L(1), i = 1, . . . , k,

where β is defined by formula (3.17). This can be done thanks to the estimates given in lemmas
9, 10, 13, 14 and 16. Then a simple degree argument yields theorem 5.

As a consequence of theorem 5 it is possible to prove the existence of solutions with infinitely
many bumps, these bumps being located near maxima and minima of the Melnikov primitive.

3.4 Non-degeneracy of the Melnikov primitive and a uniqueness result

In this section we show that if the Melnikov primitive Γ possesses non-degenerate critical points
then a uniqueness result can be proved.

To make a precise statement we assume the following condition:
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Condition 3 There exist η, ν > 0 and a sequence (an)n∈ZZ of critical points of the Melnikov
primitive Γ with an → +∞ as n→ +∞ and an → −∞ as n→ −∞ such that for any n one has:

minθ∈[an−ν,an+ν]|Γ′′(θ)| ≥ η.

Remark 10 Note that condition 3 implies condition 1 (if Γ′′ ≥ η on [an − ν, an + ν] ) as well as
condition 2, with (cn, dn) = (an − ν, an + ν).

Remark 11 If Γ is periodic condition 3 is satisfied whenever Γ possesses at least one non-
degenerate critical point ā: take an = ā+ Tn, where T is the period.

The main result of this subsection is the following theorem:

Theorem 6 Let (V1),(V2),(W1) and condition 3 hold. Moreover assume that D2V is locally Lip-
schitz continuous. Then there exist ω3 > 0, ε3 > 0 and a positive constant C18 such that: for
all ε ∈ (−ε3, 0) ∪ (0, ε3), for all k ∈ IN, for all (possibly infinite) sequence (iq)q∈J⊂ZZ such that
aiq+1 − aiq > L′ε + 2ν := −C18 ln |ε|+ 2ν there is a unique solution uε of (2.1) which satisfies:

||uε −
∑

q∈J
u

L′ε
aiq
||L∞( IR) ≤ ω3.

To prove theorem 6 we need the following lemmas:

Lemma 19 Assume that D2V is locally Lipschitz continuous. Then there is a positive constant
C19 such that for all L > L2 and |ε| ≤ ε1, for all k and for all (θ1, ..., θk) ∈ IRk with mini(θi+1−θi) >
L

| ∂
∂θi

(f ′ε(u
L
θ1

+ . . .+ uL
θk

+ w + w̄ε), u̇L
θi

)− εΓ′′(θi)| = oL,ε(1)(ε+ exp(−C19L))

for any i = 1, . . . , k.

Proof: We have:

∂

∂θi
(f ′ε(u

L
θ1

+ . . .+ uL
θk

+ w + w̄ε), u̇L
θi

) =

(f ′′ε (uL
θ1

+ . . .+ uL
θk

+ w + w̄ε)u̇L
θi
, u̇L

θi
+

∂

∂θi
(w + w̄ε)) +

(f ′ε(u
L
θ1

+ . . .+ uL
θk

+ w + w̄ε), üL
θi

) =

(f ′′ε (uL
θi

+ w + w̄ε)u̇L
θi
, u̇L

θi
+

∂

∂θi
(w + w̄ε)) + (f ′ε(u

L
θi

+ w + w̄ε), üL
θi

) = U1 + U2

where:
U1 = (f ′′0 (uL

θi
+ w + w̄ε)u̇L

θi
, u̇L

θi
+

∂

∂θi
(w + w̄ε)) + (f ′0(u

L
θi

+ w + w̄ε), üL
θi

)

and
U2 = ε(G′′(uL

θi
+ w + w̄ε)u̇L

θi
, u̇L

θi
+

∂

∂θi
(w + w̄ε)) + ε(G′(uL

θi
+ w + w̄ε), üL

θi
).

We now estimate U2. Lemma 9-(iv) implies that:

|(G′′(uL
θi

+ w + w̄ε)u̇L
θi
,
∂

∂θi
(w + w̄ε))| ≤ C| ∂

∂θi
(w + w̄ε)|θ.
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Hence by lemma 16:

U2 = ε(G′′(uL
θi

+ w + w̄ε)u̇L
θi
, u̇L

θi
) + ε(G′(uL

θi
+ w + w̄ε), üL

θi
) + εoε,L(1).

Now we have:

(G′′(uL
θi

+ w + w̄ε)u̇L
θi
, u̇L

θi
) =

∫
IR

−D2W (t, uL
θi

+ w + w̄ε)u̇L
θi
u̇L

θi
.

By lemmas 10-(i), 13, 14
||uL

θi
+ w + w̄ε − uθi

||∞ = oL,ε(1).

We easily see by (W1) that this implies

(G′′(uL
θi

+ w + w̄ε)u̇L
θi
, u̇L

θi
) = (G′′(uθi)u̇

L
θi
, u̇L

θi
) + oL,ε(1).

In the same way

(G′(uL
θi

+ w + w̄ε), üL
θi

) = (G′(uθi
), üL

θi
) + oL,ε(1).

Finally since: ||u̇L
θi
− u̇θi

||L2 = ||u̇L
0 − u̇0||L2 → 0 and ||üL

θi
− üθi

||L2 = ||üL
0 − ü0||L2 → 0 as L→ +∞

we have, by lemma 9-(ii)-(iv):

U2 = ε(G′′(uθi)u̇θi , u̇θi) + ε(G′(uθi), üθi) + εoL,ε(1) = εΓ′′(θi) + εoL,ε(1). (3.30)

In order to estimate U1 we use the invariance of f0 under the action of IR. In fact this property
implies that:

∀v1, v2 ∈ E, ∀θ ∈ IR (f ′0(θ ∗ v1), θ ∗ v2) = (f ′0(v1), v2).

Deriving with respect to θ we get:

(f0′′(v1)v̇1, v2) + (f ′0(v1), v̇2) = 0. (3.31)

Applying (3.31) to v1 = uL
θi

+ w + w̄ε and v2 = u̇L
θi

we obtain:

U1 = (f ′′0 (uL
θi

+ w + w̄ε)u̇L
θi
, u̇L

θi
+

∂

∂θi
(w + w̄ε))

− (f ′′0 (uL
θi

+ w + w̄ε)u̇L
θi
, u̇L

θi
+ ẇ + ˙̄wε)

= (f ′′0 (uL
θi

+ w + w̄ε)u̇L
θi
,
∂

∂θi
(w + w̄ε)− (ẇ + ˙̄wε)).

Now by lemma 10-(iii) and since supp u̇L
θi
⊂ Ii = [−(θi +θi+1)/2,−(θi +θi−1)/2] , we can write

for any v ∈ E
|(f ′′0 (uL

θi
+ w + w̄ε)u̇L

θi
, v)| = O(|w + w̄ε|θ + exp(−C8L))|v|θ.

Hence by lemmas 13, 14

|U1| = O(ε+ exp(−CL))(| ∂
∂θi

(w + w̄ε)|θ + |ẇ + ˙̄wε|θ). (3.32)

By lemma 16 we have that:

| ∂
∂θi

(w + w̄ε)|θ = O(ε+ exp(−C14L)). (3.33)
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Now we have to estimate |ẇ + ˙̄wε|θ = | ˙̃wε|θ.
Since we already have an estimate of |w + w̄ε|θ we have only to prove that

sup
i

(∫
Ii

¨̃wε(L, θ)2
)

= oL(1) +O(ε2).

We have by lemma 14

f ′ε(
k∑

i=1

uL
θi

+ w̃ε(L, θ)) =
k∑

i=1

α̃i(L, ε, θ)u̇L
θi

with |α̃i(L, ε, θ)| = O(ε+ exp(−C13L)).
Hence on Ii

−üL
θi

+ uL
θi
− ¨̃wε + w̃ε −∇V (uL

θi
+ w̃ε)− ε∇W (t, uL

θi
+ w̃ε) = α̃ε,i(−

···
u

L

θi
+u̇L

θi
).

Consequently on Ii

| ¨̃wε| ≤ |w̃ε|+|−üL
θi

+uL
θi
−∇V (uL

θi
)|+|∇V (uL

θi
)−∇V (uL

θi
+w̃ε)|+|α̃ε,i||−

···
u

L

θi
+u̇L

θi
|+ε|∇W (t, uL

θi
+w̃ε)|.

By (V1) and (W1) |∇V (uL
θi

)−∇V (uL
θi

+ w̃ε)| ≤ C|w̃ε| and |∇W (t, uL
θi

+ w̃ε)| ≤ C(|uL
θi
|+ |w̃ε|).

Moreover

|−üL
θi

+uL
θi
−∇V (uL

θi
)| = |−(üL

θi
−üθi

)+(uL
θi
−uθi

)−(∇V (uL
θi

)−∇V (uθi
))| ≤ |üL

θi
−üθi

|+C ′|uL
θi
−uθi

|.

Hence on Ii

| ¨̃wε| ≤ C ′′(|w̃ε|+ ε|uL
θi
|+ |üL

θi
− üθi |+ |uL

θi
− uθi |) + |α̃ε,i|(|

···
u

L

θi
|+ |u̇L

θi
|).

Now lemmas 14 ( estimates on |w̃ε|θ and on |α̃ε,i|) and 9 ( estimates on ||u̇L
θi
− u̇θi || and on

||uL
θi
− uθi

||) can be used to get

| ¨̃wε|θ = O(ε+ exp(−CL)). (3.34)

(3.34) combined with (3.30), (3.32) and (3.33) yields the desired result.

Lemma 20 Under the same hypotheses as in lemma 19 there is a positive constant C20 such that
for all l ∈ {1, . . . , k}, for all λ1, . . . , λk ∈ IRk∣∣∣∣∣∣

k∑
j=1

λj
∂

∂θj
(f ′ε(u

L
θ1

+ . . .+ uL
θk

+ w̃ε), u̇L
θl

)− λlεΓ′′(θl)

∣∣∣∣∣∣ = sup
j
|λj |(εoL,ε(1) +O(exp(−C20L))).

Proof:
By lemma 19 it is enough to prove that:

|U | = sup
j
|λj |(εoL,ε(1) +O(exp(−C20L))

where

U =
∑
j 6=l

λj
∂

∂θj
(f ′ε(u

L
θ1

+ . . .+ uL
θk

+ w̃ε), u̇L
θl

) =
∑
j 6=l

λj(f ′′ε (
k∑

i=1

uL
θi

+ w̃ε)(u̇L
θj

+
∂w̃ε

∂θj
), u̇L

θl
).
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Now since supp u̇L
θl
∩ supp u̇L

θj
= ∅ for j 6= l we have

U = (f ′′ε (uL
θl

+ w̃ε)u̇L
θl
,
∑
j 6=l

λj
∂w̃ε

∂θj
).

Let ψ ∈ E satisfy ψ = 0 outside Il, ψ = 1 on (−θl − L/4,−θl + L/4), ψ is continuous and linear
on each component of Il\(−θl − L/4,−θl + L/4). Then, since supp uL

θl
⊂ (−θl − L/4,−θl + L/4),

|(f ′′ε (uL
θl

+ w̃ε)u̇L
θl
,
∑
j 6=l

λj
∂w̃ε

∂θj
)| = |(f ′′ε (uL

θl
+ w̃ε)u̇L

θl
, ψ(

∑
j 6=l

λj
∂w̃ε

∂θj
))|

≤ C|f ′′ε (uL
θl

+ w̃ε)u̇L
θl
|W 1,2(Il)|

∑
j 6=l

λj
∂w̃ε

∂θj
|W 1,2(Il)

≤ C|f ′′ε (uL
θl

+ w̃ε)u̇L
θl
|θ|

∑
j 6=l

λj
∂w̃ε

∂θj
|θ.

Now by lemma 16 ∣∣∣∣∣∣
∑
j 6=l

λj
∂w̃ε

∂θj

∣∣∣∣∣∣
θ

= max
j

|λj |O(ε+ exp(−C14L)).

Moreover by lemmas 10-(iii) and 9-(iv)

|f ′′ε (uL
θl

+ w̃ε)u̇L
θl
|θ ≤ |f ′′0 (uL

θl
+ w̃ε)u̇L

θl
|θ + |ε||G′′(uL

θl
+ w̃ε)u̇L

θl
|θ = O(ε+ exp(−C8L)).

So we get the desired estimate 2.

Proof of theorem 6:
We shall prove theorem 6 in the case where J = ZZ (so the sequence il is infinite). The existence
of the solution uε is a consequence of theorems 4 or 5: ω3 being fixed, choose ν̄ < ν small enough
so that for all L > 8, ∀k, for all sequences (θiq

)q∈ZZ with |θiq
− aiq

| < ν̄ and θiq+1 − θiq
> L:

||
∑

q∈ZZ
(uL

θiq
− uL

aiq
)||∞ ≤ ω3

2
(3.35)

and apply theorem 5 with Ui = (ai − ν̄, ai + ν̄). We get that for ε 6= 0 small enough there exists
Lε = −Cln|ε| such that if minq(aiq+1 − aiq

) > Lε then there exists a solution of (2.1) uε with:

||uε −
∑

q∈ZZ
uLε

θiq
||∞ ≤ ω3

2
(3.36)

(3.35) and (3.36) imply that:
||uε −

∑
q∈ZZ

uLε
aiq
||∞ ≤ ω3.

In order to prove the uniqueness take ε3 small enough so that for |ε| < ε3, ε 6= 0 and L > L′ε :=
(−2/C20) ln |ε| we have in lemma 20

|εoL,ε(1) +O(exp(−C20L))| < |ε|η/3. (3.37)

An easy consequence of lemma 11 is that there is δ3 ∈ (0, δ1) such that for all L > 8 for all
sequence (iq)q∈ZZ such that aiq+1 − aiq

> L+ 2ν, if |v−
∑

q∈ZZ u
L
aiq
|a < δ3 then there are (θiq

)q∈ZZ

and w ∈W 1,2
loc which satisfy:

v =
∑
q∈ZZ

uL
θiq

+ w , (w, u̇L
θiq

) = 0, (3.38)
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θiq ∈ (aiq − ν, aiq + ν) , |w|θ < δ1. (3.39)

Here | · |a and | · |θ denote the norms associated respectively with (aiq
) and θiq

by remark 8.
Now, by standard regularity properties for the solutions of (2.1), there is ω3 > 0 such that if v is
a solution of (2.1) then

||v −
∑
q∈ZZ

uL
aiq
||∞ < ω3 =⇒ |v −

∑
q∈ZZ

uL
aiq
|a < δ3

provided L is large enough and ε is small enough.

Arguing by contradiction we assume that for some ε ∈ (−ε3, ε3) there exist two different
solutions of (2.1), uε and u′ε which are at a distance smaller than ω3 from

∑
q∈ZZ u

L′ε
aiq

with
aiq+1 − aiq > L′ε + 2ν. Fix L = L′ε. Then by the above arguments we can write (provided ε3
has been chosen small enough)

uε =
∑
q∈ZZ

uL
θiq

+ wε, u′ε =
∑
q∈ZZ

uL
θ′

iq
+ w′ε,

with |θiq − aiq | < ν, |θ′iq
− aiq | < ν, (wε, u̇

L
θiq

) = 0, (w′ε, u̇
L
θ′

iq

) = 0. By remark 8, if θiq = θ′iq
for all

q then wε = w′ε. Hence there is l such that θil
6= θ′il

. We can assume that

|θil
− θ′il

| ≥ sup
q
|θiq

− θ′iq
|/2.

Set wk = w̃ε(L, θi−k
, . . . , θik

) and w′k = w̃ε(L, θi−k
, . . . , θik

). We have

f ′ε(
k∑

q=−k

uL
θiq

+ wk) =
k∑

q=−k

α̃ε,iq
u̇L

θiq

and it is easy to see that this equation implies, by lemma 14, that the sequence wk is precompact
in W 1,2

loc . Now, if a subsequence of wk converges to w ∈W 1,2
loc then we must have

f ′ε(
∑
q∈ZZ

uL
θiq

+ w) =
∑
q∈Z

αiq
u̇L

θiq
, |w|θ < δ1.

for some (αiq
), which implies by remark 8 that w = wε. Hence wk converges to wε in W 1,2

loc .
Similarly w′k converges to w′ε. Therefore

k∑
q=−k

uL
θiq

+ wk → uε and
k∑

q=−k

uL
θ′

iq
+ w′k → u′ε in W 1,2

loc

By remark 8 it implies that

(f ′ε(
k∑

q=−k

uL
θiq

+ wk), u̇L
θil

) → 0 and (f ′ε(
k∑

q=−k

uL
θ′

iq
+ w′k), u̇L

θ′
il

) → 0

as k →∞. Set λiq = θ′iq
− θiq . Let gk be the function defined on [0, 1] by

g(s) = (f ′ε(
k∑

q=−k

uL
θiq +sλiq

+ w̃ε(L, θi−k
+ sλi−k

, . . . , θik
+ sλik

)), u̇L
θil

+sλil
).
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We have limk→∞ gk(0) = limk→∞ gk(1) = 0. Hence there exist points sk ∈ [0, 1] such that
g′k(sk) → 0. This implies

∑k

q=−k
λiq

∂

∂θiq

(f ′ε(
k∑

q=−k

uL
θiq +skλiq

+ w̃ε), u̇L
θil

+skλil
) → 0. (3.40)

Hence by lemma 20 we deduce that

|λil
εΓ′′(θil

+ skλil
)| ≤ |2λil

|(εoL,ε(1) +O(exp(−C20L)) + ok(1)

with limk→∞ ok(1) = 0. By Condition 3 and (3.37) we derive that:

|ε|η < |εΓ′′(θij + skλij )| ≤ 2|εoL,ε(1) +O(exp(−CL))| ≤ |ε|2η
3
.

This contradiction concludes the proof of theorem 6. 2

4 Bernoulli shift

In this section we describe some consequences of the previous results when the perturbation W is
T -periodic in time.

First of all let us recall some well-known results. Consider a diffeomorphism Φ : IRd → IRd with
a hyperbolic fixed point p. To make a precise description of the dynamics of Φ in presence of a
transverse homoclinic point r 6= p we recall the definition of an abstract Bernoulli shift structure.

Let us consider the space Σ = {0, 1}ZZ. Σ is endowed with the standard metric:

d(s, s̄) =
∑n=+∞

n=−∞

|sn − s̄n|
2n

.

With such a metric Σ is compact, totally disconnected and perfect, i.e Σ is a Cantor set.
On Σ acts the continuous shift-map σ defined by (σ(s))i = si+1. The shift-map σ is the

prototype of chaotic map. Indeed σ has a countable infinity of periodic orbits of arbitrarily high
periods, an uncountable infinity of non-periodic orbits and a dense orbit; σ exhibits sensitive
dependence on initial conditions.

The Smale-Birkhoff theorem states that if r 6= p is a point of transverse intersection between
the stable and the unstable manifold of p then there are l ∈ IN and and a homeomorphism
τ : {0, 1}ZZ → I ⊂ IRd, where I = τ(Σ) is an invariant Cantor set for Φl, such that Φl ◦ τ = τ ◦ σ.

In particular the Smale-Birkhoff theorem implies that the map Φ exhibits sensitive dependence
on initial conditions. In fact such a theorem implies a stronger property, namely that the topological
entropy htop of Φ is positive. Let us recall that htop is defined by the following expression:

htop = supR>0lime→0(lim supn→∞
ln s(n, e,R)

n
)

where:

s(n, e,R) = max{Card(E) : E ⊂ B(0, R) | ∀x 6= y ∈ E max
0≤k≤n

|Φk(x)− Φk(y)| ≥ e}.

htop is a measure of the asymptotic distortion of the iterates of Φ along the orbits. For example
the topological entropy of an isometry Φ is 0.
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In small perturbations of autonomous Hamiltonian systems the transversality condition required
by the Smale-Birkhoff theorem can be checked using the Melnikov function. Indeed the Melnikov
function Γ′ measures perturbatively the distance between Wu and W s; hence non-degenerate
critical points of the Melnikov primitive correspond to transverse intersections between W s and
Wu.

Now we are able to describe some consequences of the results of the previous sections when the
perturbation W (·, u) is T -periodic. In this case one can define the Poincaré map Φ : IR2n → IR2n

given by Φ(x0, ẋ0) = (x(T, x0, ẋ0), ẋ(T, x0, ẋ0)) where x(t, x0, ẋ0) is the solution of (2.1) which
satisfies the initial conditions x(0, x0, ẋ0) = x0, ẋ(0, x0, ẋ0) = ẋ0. From (V1) the point 0 ∈ IR2n is
a hyperbolic fixed point for the map Φ.

4.1 Approximate Bernoulli shift

A variational approach to the study of chaotic behaviours in Hamiltonian systems through vari-
ational methods started with the work of E.Séré [17]. He proved that the existence of solutions
with infinitely many bumps implies that it is possible to embed in the dynamics of the system an
approximate (discontinuous) Bernoulli shift structure and that the topological entropy of the sys-
tem is positive. ( See [17] for a precise definition of an approximate Bernoulli shift). In particular
in [17] the estimate on the topological entropy htop ≥ C/L is given, where C is a positive constant
and L is the sufficient distance between two adjacent bumps to glue up the bumps.

The same arguments of [17] show that theorem 4 or 5 implies the existence in system (2.1) of
an approximate Bernoulli shift structure and that the topological entropy htop is positive for ε 6= 0
small enough. In particular we give the following estimate from below for htop:

htop ≥
C

Lε
= − C

C17 ln |ε|
.

However, if we do not have any uniqueness property in theorems 4 or 5, it does not seem
possible to get a complete (continuous ) Bernoulli shift in general.

4.2 Complete Bernoulli shift

According to section 3.3, uniqueness can be obtained by the non-degeneracy of the critical points
of the Melnikov primitive. This implies that it is possible to embed a continuous Bernoulli shift in
the dynamics of the system. Thus we can prove by our method the following classical result:

Theorem 7 Let condition (V1),(V2) and (W1) hold. Moreover suppose that W is 1-periodic in
time and that D2V is locally Lipschitz. If the Melnikov primitive Γ possesses at least one non-
degenerate critical point ā then for ε 6= 0 small enough there exist l ∈ IN and a homeomorphism
τ : Σ = {0, 1}ZZ → I ⊂ IR2n onto its image such that the following diagram:

Σ τ−→ IR2n

σ
y yΦl

Σ τ−→ IR2n

commutes.

Proof:
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Fix a positive constant r > 2||u0||∞. Consider the set:

Λr = {u ∈ L∞(IR) | u solves (2.1) and ||u||∞ ≤ r}.

Λr equipped with the topology of the uniform convergence on compact subsets of IR is a compact,
metrizable topological space.

Let ω4 = min(ω3, ||u0||∞/6), where ω3 is given by theorem 6.
By theorem 6 there exists ε3 > 0 such that for any |ε| < ε3, there is L′ε such that for any infinite

sequence s = {. . . , s−n, . . . , s−1, s0, s1, . . . , sn, . . .} ∈ {0, 1}ZZ there is a unique solution uε of (2.1)
such that:

||uε −
∑i=+∞

i=−∞
siu

L′ε
ai ||∞ < ω4

where ai = ā+ i([L′ε] + 1).
Consider the map:

J : {0, 1}ZZ → Λr

which assigns to any s = {. . . , s−n, . . . , s−1, s0, s1, . . . , sn, . . .} ∈ {0, 1}ZZ the unique solution J(s) =
uε.

Note also that if s = {. . . , s−n, . . . , s−1, s0, s1, . . . , sn, . . .} 6= s̄ = {. . . , s̄−n, . . . , s̄−1, s̄0, s̄1, . . . , s̄n, . . .}
then:

||
∑

i
siu

L
ai
−

∑
i
s̄iu

L
ai
||∞ ≥ ||uL

0 ||∞, (4.1)

hence by the choice of ω4 J is injective. We claim that J is a homeomorphism between {0, 1}ZZ

and J({0, 1}ZZ) ⊂ Λr. Since {0, 1}ZZ is a metric compact space, and J is injective it is enough to
prove sequential continuity for J . Let sm ∈ {0, 1}ZZ be a sequence converging in {0, 1}ZZ to s∞.
Then J(sm) is pre-compact in Λr. Let J̄ be a limit point of J(sm). We have:

||J(s∞)−
∑

i
s∞i u

L′ε
ai ||∞ < ω4 (4.2)

and
||J(sm)−

∑
i
sm

i u
L′ε
ai ||∞ < ω4. (4.3)

For any compact interval I of IR ||J(sm) − J̄ ||L∞(I) → 0; moreover, since d(sm, s∞) → 0, for any
i we get that sm

i = s∞i provided m ≥ m̄(i) . Hence passing to the limit in (4.3) we get:

||J̄ −
∑

i
s∞i u

L′ε
ai ||∞ < ω4. (4.4)

Comparing (4.2) and (4.4), we conclude by theorem 6 that J̄ = J(s∞). This proves that J(sm) →
J(s∞) and hence that J is sequentially continuous.

Consider now the action of ZZ on Λr defined by :

for p ∈ ZZ νp(u) = u(·+ p).

Let l = [Lε] + 1 ∈ IN. By the same uniqueness argument as that used above it is easy to show
that the diagram:

Σ J−→ Λr

σ
y yνl

Σ J−→ Λr
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is commutative. The evaluation map:

Ev : Λr → IR2n is defined by Ev(u) = (u(0), u̇(0)).

Ev is continuous and by classical continuity results on the Cauchy problem (Ev)−1 : Ev(Λr) →
Λr is continuous. Moreover the diagram

Λr
Ev−→ IR2n

νl

y yΦl

Λr
Ev−→ IR2n

is commutative.
Finally define the composition map τ by :

τ : Σ = {0, 1}ZZ → IR2n given by τ = Ev ◦ J

τ is obviously continuous. The last two commutative diagrams implies the thesis that is: τ ◦ σ =
Φl ◦ τ . The proof is complete. 2

Remark 12 Note that ( see [4]) transverse intersections between Wu and W s correspond to non-
degenerate critical points of the functional fε.

5 Other applications

5.1 Radial systems

The previous arguments can be applied also to study radial systems like:

−ü+ u = |u|p−1u+ ε∇uW (t, u) (5.1)

with u ∈ IRn and p > 1. The potential V is V (u) = 1
p+1 |u|

p+1.
Let u0(t) be the unique solution of the scalar problem:

−ü0 + u0 = u0
p, (u0 > 0), u̇0(0) = 0, lim

|t|→∞
u0(t) = 0. (5.2)

Then Z = {u0(·+θ)ξ | θ ∈ IR and ξ ∈ Sn−1} is a smooth n-dimensional manifold of critical points,
diffeomorphic to Sn−1 × IR.

In [1] it is shown that Z is non-degenerate, i.e. Tuξ,θ
Z = Kerf ′′0 (uξ,θ) and one readily checks

that the arguments developed in the previous sections can be applied also in this situation. G(uξ,θ)
is the usual Melnikov primitive and has the form:

G(uξ,θ) = Γ(ξ, θ) = −
∫
IR
W (t, ξu0(t+ θ))dt. (5.3)

Condition 1 becomes:

• There are a constant η > 0 and a sequence (Un)n∈ZZ of bounded open subsets of Sn−1 × IR
which satisfy: min∂Un

Γ ≥ minŪn
Γ + η and, π denoting the projection Sn−1 × IR → IR,

π(Un) = (cn, dn) with limn→+∞ cn = +∞ and limn→−∞ dn = −∞.

If the above condition is satisfied then the same result as in theorem 4 holds true.

39



5.2 Forced systems

Here we apply the methods of the last sections in order to find multibump solutions for differential
equations of the form:

−ü+ u = ∇V (u) + εf(t) (5.4)

with f ∈ L∞. Assume that (V1) and (V2) are satisfied and that V is C3. For ε = 0, 0 is a hyperbolic
equilibrium. A simple application of the implicit function theorem shows that in a neighborhood
of 0 and for ε small enough there exists a unique solution γε(t) ∈ L∞ of the perturbed system. We
want to prove the existence of solutions doubly asymptotic to γε.

First we insert the following change of variables:

u = x+ γε (5.5)

in equation (5.4) and we obtain for x the following equation:

−ẍ+ x = ∇V (x+ γε)−∇V (γε). (5.6)

If we define:
W (ε, t, x) = −V (x) + V (x+ γε)−∇V (γε)x− V (γε)

equation (5.6) becomes:
−ẍ+ x = ∇V (x) +∇xW (ε, t, x). (5.7)

Since γε = εγ0 + o(ε) we have that W (ε, t, x) = ε∇V (x)γ0(t) + o(ε)W2(ε, x, t). Then (5.7) is in a
well-suited form to carry out the arguments of sections 2-3 and 4 (see remark 4).

The Melnikov primitive of system (5.7) is:

Γ∗(θ) = −
∫
IR
∇V (u0(t))γ0(t− θ)dt.

Since u0 is a solution of −ẍ+ x = ∇V (x), one finds that:

Γ∗(θ) = −
∫
IR

(−ü0 + u0)γ0(t− θ)dt. (5.8)

Moreover since γε solves (5.4) γ0 solves the equation −γ̈0 + γ0 = f(t). Hence integrating by parts
in (5.8) we have that:

Γ∗(θ) = −
∫

R

f(t− θ)u0(t)dt = Γ(θ).

Then we can apply to equation (5.4) all the results of the last sections proving the existence
of infinitely many homoclinics and of solutions with infinitely many bumps provided the Melnikov
primitive Γ satisfies conditions 1 or 2.

5.3 Partial differential equations of Schrödinger type

Thanks to the generality of our approach we can handle partial differential equations such as:

−∆u+ u = |u|p−2u+ ε∇uW (x, u) = 0, |u(x)| → 0 as |x| → ∞ (5.9)

where u : IRn → IR. We assume that 2 < p < 2∗ = 2n/(n− 2) and that:

• (W3) W ∈ C2(IRn× IR, IR), W (x, 0) = 0, ∇uW (x, 0) = 0, D2W is continuous uniformly with
respect to x ∈ IRn; moreover |D2

uW (x, ·)| ≤ C1|u|q−2 + C2 for some q with 2 < q < 2∗.
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In this paragraph we will work in the Sobolev space E = W 1,2(IRn, IR).
It is well known that the unperturbed equation has a unique positive solution z0 such that

∇z0(0) = 0 and that z0 has an exponential decay as |x| → ∞.
The perturbed functional is fε = (1

2 )||u||2 + F (u) + εG(u) where:

F (u) = −1
p

∫
IRn

|u|pdx and G(u) = −
∫

IRn

W (x, u).

The manifold Z = {z0(·+θ) | θ ∈ IRn} is a smooth n-dimensional non-degenerate critical manifold
for f0 ( see [2] and references therein for a proof).

Still in this situation, using the Sobolev embedding theorems, it is possible to apply the argu-
ments of sections 2 and 3.

The Melnikov primitive Γ : IRn → IR is defined by:

Γ(θ) = −
∫

IRn

W (x, z0(x+ θ))dx.

Assume that Γ satisfies:

Condition 4 There are η > 0 and a sequence (Un)n∈ZZ of bounded open subsets of IRn which
satisfy:

(i) Γ|Un
attains its minimum at some an ∈ Un and Γ|∂Un

≥ η + Γ(an);
(ii) minx∈Un

|x| → ∞ as |n| → ∞.

By the same arguments as in section 2, condition 4 allows to prove the existence of infinitely
many k-bump solutions of (5.9).

Moreover, we can prove the existence of solutions with infinitely many bumps: let us define a
norm which is analogous to the norm | · |θ defined in section 3.

Fix L > 8 and (θ1, . . . , θk) ∈ IRnk such that mini |θi+1 − θi| > L. For x ∈ IRn we define:

R(x) = sup{R | B(x,R) contains at most one θi}

where B(x,R) is the ball of center x and radius R. Note that R(x) ≥ L/2. Next we define the
norm on E

||u||θ = max
{
|u|θ, ||u||W 1,2(D)

}
,

where |u|θ = supx∈IRn ||u||W 1,2(B(x,R(x)/4)) and D =
{
x ∈ IRn

∣∣∣ mini |x − θi| ≥ 2M with M =

diam{θ1, . . . , θk}
}

.
Using the above norm, with arguments similar to those of the previous sections, it is possible

to prove that:

Theorem 8 Let (W3) and condition 4 hold. ∀ω > 0, ∃ε4 > 0 such that ∀ε ∈ (−ε4, 0)∪ (0, ε4) there
exists Lε such that for any sequence (il)l∈K⊂ZZ with inf l |dist(Uil+1 , Uil

)| > Lε there are θl ∈ Uil

and a solution uε of (5.9) which satisfies:

||uε −
∑

l
uθl

||∞ ≤ ω.
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6 Appendix

In this appendix we prove lemmas 8, 9, 10, 17.

Proof of lemma 8-(i):
By the definition of fε we have that for |ε| ≤ 1 : |fε(s+ r)− fε(s)− fε(r)| =

|1
2
||s+r||2− 1

2
||s||2− 1

2
||r||2−

∫
IR

(V (s+r)−V (s)−V (r))−ε
∫

IR

(W (t, s+r)−W (t, s)−W (t, r))| ≤

|(s, r)|+
∫

IR

|V (s+ r)− V (s)− V (r)|+
∫

IR

|W (t, s+ r)−W (t, s)−W (t, r)|. (6.1)

Obviously

|(s, r)| ≤
∫

IR

|r||s|+ |ṙ||ṡ|. (6.2)

In order to estimate the other terms in (6.1) consider the following function of the variable s, Vr(s)
= V (s+ r)− V (s)− V (r). We have that :

|Vr(s)| = |Vr(s)− Vr(0)| ≤ supλ∈[0,1]|DVr(λs)||s| = supλ∈[0,1]|DV (λs+ r)−DV (λs)||s|.

Moreover:

|DV (λs+ r)−DV (λs)| ≤ supµ∈[0,1]|D2V (µ(λs+ r) + (1− µ)λs)||r(t)|.

Hence the last 2 formulas yield:

|V (s+ r)− V (s)− V (r)| ≤ supµ,λ∈[0,1]|D2V (µr + λs)||r||s|.

Since D2V is continuous and ||µr + λs||∞ ≤ 2b there exists a positive constant C ′(b) such that:

|D2V (µr + λs)||r||s| ≤ C ′(b)|r||s|

and this implies that ∫
IR

|V (s+ r)− V (s)− V (r)| ≤ C ′(b)
∫

IR

|r||s|. (6.3)

Using that D2W (t, u) is bounded on bounded subsets of IRn uniformly with respect to t we can
obtain: ∫

IR

|W (t, s+ r)−W (t, s)−W (t, r)| ≤ C ′′(b)
∫

IR

|r||s|. (6.4)

Lemma 8-(i) is a consequence of (6.1), (6.2), (6.3) and (6.4).

Proof of lemma 8-(ii):
He have: |(f ′ε(s+ r)− f ′ε(r), v)| ≤

|(s+ r, v)− (r, v)|+
∫

IR

|DV (s+ r)−DV (r)||v|dt+
∫

IR

|DW (t, s+ r)−DW (t, r)|dt

≤
∫

IR

|s||v|+ |ṡ||v̇|+
∫

IR

supλ∈[0,1]|D2V (r + λs)||v||s|dt+
∫

IR

supλ∈[0,1]|D2W (t, r + λs)||v||s|dt
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since ||r + λs||∞ ≤ 2b and |D2W (t, ·)| is bounded on bounded subsets of IRn uniformly in t we
have that:

≤
∫

IR

|s||v|+ |ṡ||v̇|+
∫

IR

C ′(b)|s||v|dt+
∫

IR

C ′(b)|v||s|dt

≤ C(b)
∫

IR

|s||v|+ |ṡ||v̇|.2

Proof of lemma 9-(i):
By the property (Pθ) of lemma 7 there is Y ∈ E such that ||Y || = 1, supp Y ⊂ [mi,i+1−2,mi−1,i+2],
where mi,i+1 = −(θi + θi+1)/2 and |f ′0(uL

θ1
+ · · ·+ uL

θk
+ v)|θ ≤ 5(f ′0(u

L
θ1

+ · · ·+ uL
θk

+ v), Y ).
It is clear that for j 6= i, Y and uL

θj
have disjoint supports. Since by (V1), |∇V (x)|/|x| is

bounded on bounded subsets of IRn, we have that:

|(f ′0(uL
θ1

+ · · ·+uL
θk

+v), Y )| = |(uL
θi

+v, Y )−
∫

IR

∇V (uL
θi

+v)Y | ≤ (||uL
0 ||+1)+C

∫
IR

|uL
θi

+v||Y |.

This clearly implies |(f ′0(uL
θ1

+ . . .+ uL
θk

+ v), Y )| ≤ (1 + C)(||uL
0 ||+ 1) and we get (i).

Using (W1) the estimate 9-(ii) is obtained in the same way. 9-(iii) and 9-(iv) can also be
easily proved, using (Pθ) and the fact that |D2V | and supt |D2W (t, ·)| are bounded on bounded
subsets of IRn.

Proof of lemma 9-(v) Let Y ∈ E satisfy

|(f ′′0 (
k∑

i=1

uL
θi

+ v)− f ′′0 (
k∑

i=1

uL
θi

))X|θ ≤ 5((f ′′0 (
k∑

i=1

uL
θi

+ v)− f ′′0 (
k∑

i=1

uL
θi

))X,Y )

with ||Y || ≤ 1 and supp Y ⊂ [mj,j+1 − 2,mj−1,j + 2] for some j. Then

((f ′′0 (
k∑

i=1

uL
θi

+ v)− f ′′0 (
k∑

i=1

uL
θi

))X,Y ) =
∫ mj−1,j+2

mj,j+1−2

(D2V (uL
θj

+ v)−D2V (uL
θj

))XY.

Now, since D2V is uniformly continuous on bounded subsets of IRn, using the fact that ||v||∞ ≤
2|v|θ we can write

||D2V (uθj + v)−D2V (uθj )||∞ ≤ r(|v|θ) (6.5)

with lims→0 r(s) = 0. Moreover∫ mj−1,j+2

mj,j+1−2

|X||Y | ≤ ||Y || · ||X||W 1,2(mj,j+1−2,mj−1,j+2) ≤ 3|X|θ. (6.6)

Combining (??) and (6.6) we get the desired estimate.

Proof of lemma 10-(i)
Since 0 is a hyperbolic equilibrium point of (2.1), u0 and u̇0 have exponential decay, i.e. there

are two positive constants C and C ′ such that

|u0(t)|, |u̇0(t)| ≤ C exp(−C ′|t|). (6.7)
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Since u0 solves equation 2.1 , (6.7) implies by (V1) that ü0 and
···
u0 have also exponential decay. So

we can assume that
|ü0(t)|, |

···
u0 (t)| ≤ C exp(−C ′|t|).

By the definition of uL
0 it is easy to see that these estimates imply the existence of constants C ′′

and C ′′′ such that for all L > 8

||u0 − uL
0 ||+ ||u̇0 − u̇L

0 ||+ ||ü0 − üL
0 || ≤ C ′′ exp(−C ′′′L)

(Remember that u0 and uL
0 coincide on (−L/4, L/4)).

Proof of lemma 10-(ii)
Let Y ∈ E, ||Y || ≤ 1 have its support in Ii + [−2, 2] for some i ∈ {1, . . . , k}, where Ii =

[−(θi + θi+1)/2,−(θi + θi−1)/2]. Then for j 6= i supp uL
θj
∩ supp Y = ∅ and since uθi solves (2.1):

(f ′0(u
L
θ1

+ · · ·+ uL
θk

), Y ) = (uL
θi
, Y )−

∫
IR

∇V (uL
θi

)Y

= (uL
θi
− uθi , Y )−

∫
IR

(∇V (uL
θi

)−∇V (uθi))Y.

Hence, by 10-(i) and since D2V is bounded on bounded subsets of IRn there is a constant C such
that:

|(f ′0(uL
θ1

+ . . .+ uL
θk

), Y )| ≤ C exp(−C ′L).

Therefore 10-(ii) holds by lemma 7.

Proof of lemma 10-(iii) Let Y satisfy ||Y || ≤ 1, supp Y ⊂ Ii + [−2, 2].
We have:

|(f ′′0 (uL
θ1

+ . . .+ uL
θk

+ v)(λ1u̇
L
θ1

+ . . .+ λku̇
L
θk

), Y )| = |(f ′′0 (uL
θi

+ v)λiu̇
L
θi
, Y )|

≤ |λi|3|f ′′0 (uL
θi

+ v)u̇L
θi
|θ||Y ||

≤ 3C4|λi||u̇L
θi
|θ

by lemma 9-(iii). So we get the first estimate from property (Pθ) of lemma 7.

Now assume that D2V is locally Lipschitz continuous. Then

|(f ′′0 (uL
θi

+ v)λiu̇
L
θi
, Y )| = |λi||(u̇L

θi
, Y )−

∫
IR

D2V (uL
θi

+ v)u̇L
θi
Y |.

Since
(u̇θi , Y )−

∫
IR

D2V (uθi)u̇θiY = 0

we get ( using that supp Y ⊂ Ii ∪ Ii−1 ∪ Ii+1 and ||Y || ≤ 1 )

|(f ′′0 (uL
θi

+ v)λiu̇
L
θi
, Y )| ≤ |λi|(|(u̇L

θi
− u̇θi

, Y )|+
∫

IR

|D2V (uL
θi

+ v)−D2V (uθi
)||u̇L

θi
||Y |

+
∫

IR

|D2V (uθi
)||u̇L

θi
− u̇θi

||Y |)

≤ |λi|(||u̇L
θi
− u̇θi

||+ C(|v|θ + ||uL
θi
− uθi

||)||u̇L
θi
||+ C||u̇L

θi
− u̇θi

||)

The second estimate is then a consequence of 10-(i) and of property (Pθ).
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Proof of lemma 17 :
We are going to prove that:

||w̃ε||W 1,2(J) = O(exp(−C(θ2 − θ1)) (6.8)

where J = (−(θ1 + θ2)/2− 2,−(θ1 + θ2)/2 + 2).
For k ≤ (θ2 − θ1)/2− L/4 let Gk = (−θ2 + L/4 + k,−θ1 − L/4− k).

We already know by lemmas 13 and 14 that ||w̃ε||W 1,2(G0) ≤ ε + C exp(−CL). Now, since G0 ∩
supp uL

θi
= ∅ for all i, by the definition of w and w̄ε, we have

− ¨̃wε + w̃ε = ∇V (w̃ε) +∇W (t, w̃ε) on G0 (6.9)

For k ≥ 1 let ϕk be the function defined on G0 by: ϕk = 1 on Gk; ϕk = 0 outside Gk−1; ϕk is
continuous on G0 and it is linear on each component of Gk−1\Gk. By (6.9)∫

G0

( ˙̃wε, ϕk
˙̃wε + ϕ̇kw̃ε) + (w̃ε, ϕkw̃ε)− (∇V (w̃ε) + ε∇W (t, w̃ε), ϕkw̃ε) = 0

This implies (since |ϕ̇k| ≤ 1 )∫
Gk

| ˙̃wε|2+|w̃ε|2 ≤
∫

Gk

|∇V (w̃ε)+ε∇W (t, w̃ε)||w̃ε|+
∫

Gk−1\Gk

| ˙̃wε||w̃ε|+|∇V (w̃ε)+ε∇W (t, w̃ε)||w̃ε|.

(6.10)
Now, by (V1), (W1), limx→0 |∇V (x)|/|x| = 0 and there is a constant C such that |∇W (t, x)| ≤ C|x|
for |x| ≤ 1. Hence, by lemmas 13 and 14, for L large enough and ε small enough,∫

Gk

|∇V (w̃ε) + ε∇W (t, w̃ε)||w̃ε| ≤
1
2

∫
Gk

|w̃ε|2. (6.11)

(6.10) then implies∫
Gk

| ˙̃wε|2 + |w̃ε|2 ≤ 2
∫

Gk−1\Gk

| ˙̃wε||w̃ε|+ |∇V (w̃ε) + ε∇W (t, w̃ε)||w̃ε|

≤ C ′′
∫

Gk−1\Gk

| ˙̃wε|2 + |w̃ε|2

where C ′′ is some constant independent of L, ε, k. Setting Rk = ||w̃ε||2W 1,2(Gk) we get Rk ≤
C ′′(Rk−1 −Rk). Hence

Rk ≤
C ′′

C ′′ + 1
Rk−1.

Therefore

Rk ≤ (
C ′′

C ′′ + 1
)k(ε2 + exp(−CL)). (6.12)

If we take k = [(θ2 − θ1)/2− L/4]− 2 then J ⊂ Gk and (6.12) implies the estimate of lemma 17.

Acknowledgement:The authors thank A.Ambrosetti and U.Bessi for fruitful suggestions. This
paper was written during a stay of the second author at the Scuola Normale Superiore. He wishes
to thank Prof. Ambrosetti and the staff of the S.N.S. for their kind hospitality.

45



References

[1] A.Ambrosetti and M.Badiale: Homoclinics: Poincaré-Melnikov type results via a variational
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Ann.Fac.Sciences Toulouse 1 (1992), 211-235.

[12] V.K.Melnikov: On the stability of the center for time periodic perturbations, Trans.Moscow
Math. Soc. 12 (1963), 3-52.

[13] P.Montecchiari and M.Nolasco: Multibump solutions for perturbations of periodic second order
Hamiltonian systems, Nonlinear anal. and applications, TMA, 27, 1335-1372.
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