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Abstract

This paper deals with perturbed dynamical systems of the form:
—ti+u=VV(u)+ eV, W(t,u)

where u(t) € IR"(n > 1). By means of a variational approach the existence of multibump ho-
moclinics is proved under general assumptions on the Melnikov function. As a particular case,
if W(-,u) is T-periodic, the existence of approximate and complete Bernoulli shift structures
is proved. An application to partial differential equations is also given. '

1 Introduction

This paper deals with homoclinics and chaotic behaviour for perturbed dynamical systems and
partial differential equations.

From the works of Poincaré [14] it became clear that the existence of homoclinic orbits deter-
mines a chaotic behaviour in the dynamics of a system. Consider a symplectic diffeomorphism
® : IR?™ — IR®" with a hyperbolic fixed point p. The intersection points between the stable and
the unstable manifolds W* and W™ are called homoclinic points. Poincaré proved in [14] that if
W# and W* intersect transversally then the diffeomorphism ® admits infinitely many homoclinic
points. This result was later improved by Birkhoff and Smale. They proved that in presence of a
transverse homoclinic point r # p, the map ¢ admits a Bernoulli shift structure. In particular it
implies sensitive dependence on initial conditions and more precisely that the topological entropy
of ® is positive.

The Smale-Birkhoff theorem can be applied to T-periodic Hamiltonian systems through the
Poincaré map defined as the time-T" map of the Hamiltonian vector field.

For small perturbations of autonomous Hamiltonian systems the transversality condition can
be checked using the Melnikov function. The existence of simple zeros of the this function implies
the existence of transverse intersections.

All the former results are obtained by analytical methods.

In recent years with the works of Bolotin [7] and Coti-Zelati-Ekeland-Séré [8] variational meth-
ods too have been successfully applied for the search of homoclinics. In [16] E. Séré developed new
variational technics to prove, under global assumptions, the existence of infinitely many homoclinic
solutions of “multibump” type. Generalizing [16] the same author proved in [17] the existence of
an approximate Bernoulli shift structure; this is sufficient to show that the topological entropy of
the system is positive and hence that the dynamics of the system is chaotic. Other papers extend
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the existence and multiplicity results of [8],[10],[16] and [17] to almost-periodic systems (see for
example [9],[13] and [15]).

Variational methods have been applied in the perturbative case too.

For example in [6] Bessi constructed, for the 1-dimensional pendulum with a periodic forcing
term, an approximate Bernoulli shift structure under the assumption that the Melnikov function
is non-constant.

More recently Ambrosetti and Badiale [1] used the Melnikov function to prove existence and
multiplicity results for homoclinics in perturbed Lagrangian systems and partial differential equa-
tions of Schrodinger type.

In order to have an idea of the method used in [1] let us consider second order Lagrangian
systems with n degrees of freedom of the form:

—li4u=VV(u)+ eV, W(t, u) (1.1)

where V(0) = 0, VV(0) = 0, D?V(0) = 0 and W(t,0) = 0, V,,W(¢,0) = 0. Homoclinic solutions
of (1.1) are critical points of the Lagrangian functional:

fe(u) = / — 4+ — —V(u) — eW(t,u)dt.

If the unperturbed equation has a homoclinic ug # 0 then the set Z = {up = up(- +0)} is a
manifold of critical points for fy.

Ambrosetti and Badiale in [1] look for the existence of critical points of fe near the 1-dimensional
manifold Z. They show that critical points of f. close to Z can be found as critical points of the
restriction fe; where Z is a 1-dimensional manifold close to Z ( Z. is called a natural constraint).
It turns out that f6| 7. 18, up to a constant, very close to the function eI’ where I is defined by:

() = —/}RW(t,uo(t +0))dt

This is nothing but the primitive of the Melnikov function and it will be called throughout this
paper the Melnikov primitive.

It follows that, roughly speaking, critical points of the Melnikov primitive I" give rise to critical
points of the functional f..

In this paper we generalize their method in order to prove the existence of multibump homoclinic
solutions and chaotic behaviour in such systems. We prove a connection between multiplicity results
for homoclinics and the properties of the Melnikov primitive. Roughly speaking when the Melnikov
primitive has critical points which are sufficiently separated there exist multibump solutions which
can be located. We prove this result showing that it is possible to construct, for € small enough,
k-dimensional constrained manifolds, such that the critical points of the restriction of f. to these
manifolds give rise to k-bump homoclinic solutions of (1.1). Even if in general the unperturbed
functional f does not possess a k-dimensional manifold of critical points such a construction can
be performed because:

fo'(w(lr +)+ ... +u(@p + ) — 0
as mini(ﬂi_;,_l — 01) — +00.

Still in this situation, particular properties of the Melnikov primitive I" induce the existence of
homoclinics u.; each bump of u. is located near ug(6 + -) for some critical point 6 of I".



Moreover, using in the computations estimates which do not depend on the number of bumps
k, we obtain the existence of solutions of (1.1) with infinitely many bumps. See theorems 4 and 5,
which are the main results of this paper.

When the perturbation is periodic, a dynamical consequence of the existence of these multibump
solutions is the presence of an approximate Bernoulli shift structure (see [17]); in addition, if the
Melnikov primitive possesses at least one non-degenerate critical point then we prove by means of
this variational method a classical result, namely the existence of a complete (continuous) Bernoulli
shift structure in the dynamics of the system.

We underline that an advantage of the method is that, since all our results are obtained in the
same abstract variational setting, we do not require any general restriction on the time-dependence
of the perturbation such as periodicity, almost-periodicity, etc. If the perturbation is almost
periodic the condition that the Melnikov primitive is non constant is sufficient to guarantee the
existence of infinitely many homoclinics and of solutions with infinitely many bumps.

Moreover our method is well suited also to study partial differential equations of Schrodinger
type.

For the sake of clarity we prefer to prove, first, the existence of 2-bump solutions, developing
all the computations in a case in which the technicalities are as small as possible. We underline
that the existence of k-bump solutions and of solutions with infinitely many bumps do not require
any stronger assumption on the Melnikov primitive.

The paper is organized as follows:

Section 2 is devoted to the proof, whenever the Melnikov primitive satisfies suitable conditions,
of the existence of infinitely many 2-bump solutions.

Section 3 deals with solutions with infinitely many bumps. In addition a uniqueness result is
proved under the assumption that the Melnikov primitive possesses non-degenerate critical points.

In Section 4 we study some consequences of the results of section 3 in the periodic case, such
as the existence of a Bernoulli shift structure.

Section 5 concerns other second-order systems and an application of the method to partial
differential equations of Schrédinger type.

Contents
Notations
e VV = (D;V)i<i<n, the gradient of V;
e DF the k-th derivative;
e [, the gradient of the functional f;

e f” the second derivative of the functional f;

e E = WL2(IR™, IR"), the standard Sobolev space with the scalar product (-,-) defined by
(u,v) = [ g (VuVv + uv) and the norm ||ul|* = (u, u).

e We shall use the continuous embeddings F — L?(IR"™,IR") where 2 < ¢ < 2* = 27 if
n>32<¢g¢g<xifm=2and2<g<o0ifm=1;

e u, — u and u,, — u will mean that u, converges respectively in the weak and in the strong
topology to u in E;



e There is an action of R™ on E defined by 6 *u = u(6 + -) which preserves the scalar product

('v');
b <¢17--~>¢m> = span{¢17...,¢m} = {al(bl + +am¢m | a; € IR’}

C, C', C" will denote in the proofs positive constants which do not depend of anything, but
which can take each time a different value.

The notation C; will be reserved to positive constants which appear in the lemmas and which
have a fixed value.

Moreover oy, (1) (resp. or(1)) will denote a quantity which tends to 0 as L — 400 (resp. as
L — 400 and € — 0 ) independently of anything else.

The expression “a(z1,...,2,) = O(b(21,...,2p))” will mean that there is an absolute positive
constant C such that for all (z1,...,2,), |a(z1,...,2)| < Clb(z1,...,2p)]|-



2 Existence of 2-bump solutions
In this section we consider the perturbed second order system of differential equations:
—li4u=VV(u)+ eV, W(t, u) (2.1)

where u € R™ (n > 1).

2.1 Hypotheses and variational formulation
We assume that:
e (V1) Ve C?*(IR",IR), V(0) =0, VV(0) = 0, D?V(0) = 0;

o (W)W e C*(RxIR",IR), W(t,0) =0, V,W(t,0) =0, D2W(t,0) is bounded and D2W (¢, -)
is continuous uniformly with respect to ¢.

Because of (V1) the origin is a hyperbolic equilibrium of the unperturbed system.
We will work in the Sobolev space E = W12(IR,IR"). For u € E we set:

F(u) =— /]R V(u)dt and G(u)=— /]RW(t,u)dt.

Note that because of (V1) and (W;) the functionals F' and G are well defined. Moreover, using
the continuous embedding W12?(IR,IR") — L*°(IR,IR"), it can be checked that F and G are of
class C? on E.

Homoclinic solutions of (2.1) are critical points of the functional:

o) = Gl + Flw) + eGlu). (22)
As in [1] we require some non-degeneracy condition on the unperturbed equation:
—ii4+u=VV(u). (2.3)
We will assume:
o (V5) Jug € E such that ug solves (2.3) and Ker f{/(ug) = span{ig}.

Then equation (2.3) has a homoclinic uy € F such that the solutions ¢ € E of the linearized
equation )
~¢+¢ =DV (ug(t))¢ (2.4)

form a one dimensional space.
Since the functional fj is invariant under the action of R, Z = {ug = uo(- +6) | 6 € R} is a
C? one-dimensional manifold of critical points at level b = fo(ug) and Ty, Z = span{ig} = (tg).
Hypothesis (V%) implies that the critical manifold Z is non-degenerate, i.e. Ty, Z = Ker f{ (ug)
for any 0 € IR.



2.2 A result on the existence of infinitely many 2-bump solutions

In this paragraph, for the sake of clarity, we show which kind of results can be obtained in section
2.
Let us consider the Melnikov primitive I' : IR — IR defined by:

() = — /}R W (t, uo (¢ + 6))dt.

We make the following hypotheses on I':

Condition 1 There are n > 0 and a sequence (U, = (¢pn, dn))nez of bounded open intervals of IR
which satisfy:

(i) Tyu, attains its minimum at some a,, € (cn,dn) and Ujqc, 4,3 = T(an) +n;

(ii) ¢, — 400 as n — +oo and d,, = —00 as n — —oo.

At the end of section 2 we will list some cases in which Condition 1 is satisfied.
The following theorem will be proved in section 2.5:

Theorem 1 Let (V1),(Va),(W1) and condition 1 hold. For € # 0, |e| small enough there exists L.
such that if ¢;, —diy, > L then fe has a critical point u. located near some ug, + ug, with 01 € Uy,
and 0y € U“

An immediate consequence of theorem 1 is the following corollary:

Corollary 1 Let (V4),(V2),(W1) and condition 1 hold. There exists €1 > 0 such that V|e| < €,
€ # 0 equation (2.1) has infinitely many 2-bump solutions.

Remark 1 At the end of section 2 we will state a more general result ( see theorem 2) on the
ezistence of k-bump solutions.

2.3  The natural constraint 7 .
Definition 1 A submanifold M C FE is called a natural constraint for the functional f. if
ue M and (fepr)'(u) = 0 imply that fl(u) = 0.

Under hypotheses (V1),(V2) and (W) Ambrosetti and Badiale in [1] build a 1-dimensional
natural constraint Z. for f. near the critical manifold Z. Our aim is to build a natural constraint
for 2-bump solutions.

Consider a cut-off function ¢ € C*°(IR,IR) such that:
1 1 ,
(t) =1 for |t| < 3’ ©(t) =0 for || > 1 and |||l < 16.

Next define the function: ;
a (1) = o Juo(t).

We will denote by ul the translate of uf: uf =uf (6 +-) = 6 = uf. Note that supp uf C [-%, £]
and that if 6, — 67 > L then supp uglﬁ supp ugz = (). Moreover:

uf —ug and 0l —ay as L — +oo.



(Explicit estimates on ||ug — u¥|| and ||ig — @f|| will be given in lemma 10-(i)). In order to prove
theorem 1 we will build for L large enough a natural constraint Zy, . for the functional f, close to
the 2 dimensional manifold:

Zr, = {ué +’U,52 ‘ 0y — 61 > L}

This will be possible because by (V7):
Jo' (ug, +ug,) = fo' (ug,) + fo' (ug,) — 0 (2.5)

if 5 — 0, > L and L — +oo.
In order to build the C! manifold Z;, . we need some lemmas.

We define the norm of (X 1, ia) €  x B2 by [|(X. s r2)| = [1X]| + x| + sl
The tangent space to Zy, at ug + ug, is equal to (if ,uf).

In the sequel we shall always assume that L > 8 ( it implies in particular that (supp ugl +
[—2,2]) N (supp ug, +[—2,2]) =0 if 0 — 01 > L).
For § positive let:

VP ={(v,01,02) € ExIR*| 6 — 01 > L,v € (i, , i) and [jv]| < }.
Let % : V) — E be the map defined by h(v,01,602) = uf + ug, +v.

Lemma 1 There is §g > 0 such that, if L > 8, h is a diffeomorphism from V,fo onto a neighbor-
hood of Zy,.

Proof:
For 6 > 0 we denote by Bj the ball of center 0 and radius § in E.
Let 1" : Bs x {(61,02) | 63 — 6, > L} — E x IR? be defined by:

W (v,01,02) = (v+uf, +ug,, (v,4g), (v, 4g,)).

We shall prove that there exists 6y such that for any L > 8, ¢ is a C' diffeomorphism onto a
neighborhood of Z, x {0} in E x IR?.

We will prove that for some dy > 0 and for any L > 8 :

(i) o' is alocal diffeomorphism on Bs, x {(01,62) | 62 — 61 > L}.

(ii) * is injective on Bs, x {(61,02) | 02 — 61 > L}.

From (i) and (ii) we will have that ¢ is a global diffeomorphism from Bs, x {(01, 02)|02 — 01 >
L} onto a neighborhood of Z;, x {0}.

Finally we will get lemma 1 noticing that V;° = (¢%)~1(E x {0}).

Proof of (i):

Let (0,91,92) € Bs x {(01,92)‘92 — 01 > L}
We have:

d(o,0,,0)0" (X, M1, A2) = (X + Naag, + Aoy, (X, ;) + M (v, dig, ), (X, g, ) + Ao (v, g, ).
Let B denote the linear operator defined on E x IR? by:
B(X, M1, A2) = (X + Mg, + Xouf,, (X, af), (X, aF)).

We have:
1(d,6,,00)%" — B)(X, A1, A2)l| < 6C||(X, A1, o)l (2.6)



where C = sup, g ||iif|| < +oc.

Moreover for all X € E we can write X =Y + g + potif;, where Y € <u(§1,ug2>{ [ |12 s =
(X, ) for i=1,2.

Thus

1BOX, A, M)l = Y+ (s + Mg, + (p2 + Aa)ig, || + [ | (] + [p2])-
and, since Y, ugl,ugz are pairwise orthogonal and infz~g ||| > 0, we get:

[[B(X, A1, A2)]] C'(JIV[| 4 g1 + M| + g2 + Aof + | + |p2]

>
> C'(IIYI]+ 1Al /2 + A2l /2 + |l /2 + |12] /2).

Hence, since || X|| < ||V + (Ju1] + |p2])||ad||* and maxp~g|[ad||?> < oo, there exists C” > 0
such that:
IB(X, A1, A2)l] = CY(IX]] + [Aa] + [Az))- (2.7)

Now choose dp > 0 such that §oC < C”/2. By (2.6) and (2.7) we have that for all L > 8, for
all (0,91,92) € B5 X {(01,02)‘02 — 01 > L)}

C//
[ldw.1,00 %" (X, A1, A2)[] = (1 A1, Ao (2.8)

Thus d(v731792)1/)L is injective; in addition this operator has the form “Id + compact” hence it
is an isomorphism and ' is a local diffeomorphism on Bs, x {(61,62)|02 — 61 > L}.

Proof of (ii):

It is easy to check that for all v > 0 there is n > 0 independent of L, such that for all (v, 61, 6s),
(1}/,9/1,0/2) in B5o X {(91,92”02 — 0, > L}

lo—v'|| + 161 — 03] + 102 — O3] < 7 = ld(0,0,,00)0" — diwr 07.05)0" 1] < 7-

This uniform continuity property, combined with (2.8), gives that there exists v > 0 ( indepen-
dent of L) such that:

0 < [0y = 03] + 102 — 5] + |lv = /|| < v = " (v, 01,02) # (v, 05, 65). (2.9)
Now assume that : (64,05, v") = % (61,02,v). Then
llug, +ug, — ug, — ugylloo = |[v" = vlloe <[] = v]| < 26p. (2.10)

Since 6, < 02 and 0] < 0}, we can assume that min(fy, 6}, 62,05) = 0;.
Thus 03 — 61 > L and 6}, — 0] > L.
Hence [0y — L/4,—6, + L/4]N (supp ug, U supp ugé) = () and by (2.10)

||ug, — ueLfl||Loc[—al—L/4,—91+L/4] < 2dp.
Now it is easy to see that there is p > 0, independent of L > 8, such that
||u(§1 — u£1||Loo[_91_L/47_91+L/4] < U= |91 — 9/1| < I//4 (211)

Taking dp smaller if necessary we can assume that 25 < p and 25y < v/2.
Thus we get |[v —v'|| < v/2,|01 — 0}| < v/4 and ( by the same way ) |02 — 05| < v/4.



Therefore by (2.9) we get (v,61,02) = (v/,07,605). This concludes the proof of (ii). O
In [1] the manifold Z, is found by mean of the implicit function theorem applied to the map:
H:RxRxExR—=ExR
with components H; and H, given by:

Hl(G,U,U,’Y) = fé(ug—‘r’l))_’}/do-,
H2(€7 g, 0, ’Y) = (’Ua ua)‘

The implicit function theorem can be applied because Kerf](u,) = (ti,) implies that the
partial derivative of H with respect to (v,~) evaluated in (0, 0,0, ) is invertible.

We will generalize this approach to build Zy, .
Let us define the function:

HY : RxR?x ExR* - E x R?
with components HY € E and H¥ € IR? given by:

H1L(€70170271)7a1aa2) = fe,(,u‘gl +u£/2 +U) _aluGLl _OQ,L.ng?

H2L(5,01,02,v7a1,a2) ((v,dé%(v,dé)).

Consider the partial derivative of H:

OHY  OHT aHQL)
o(v,a)  0(v,a)’ I(v,a)

evaluated at (0,6,0,a) (where § = (61,65) and a = (a1, az) ). It’s the linear operator of E x IR?
given by:

OH} (X, po) = fo (ug, + ug,) X — prig, — potig),
(v, a) 1(0,6,0,a)
8H2 . I - L
(X, paspe] = (X, 14g,), (X, 1g,))-
(v, a) 1(0,6,0,a) ’
HE HE
Since HL is linear in (a1, ap) there results that i = 0 is independent
(v, @) |(e,0,v,0) (v, ax) |(e,6,v)
of (a1, as). 5
H
In lemma 2 we will prove that, provided L is great enough, L is invertible and the

(v, ) 1(0,6,0)
norm of the inverse satisfies a uniform bound.
In lemmas 3 and 4 we will show how to build Zp ..

Lemma 2 There exist positive constants Cy, Ly > 8 such thatVL > Ly, V0 = (01, 02) with 3—60; >
L, and ¥(X, p1, i2) € E x IR*:

OHE
(v, @) 0,6,0)

(X, p1, p2]l| = Chl[(X, pa, p2)l], (2.12)
i.e:

1 fo” (ug, + ) X — patiy, — pztigs || + (X, )| + (X, g, > Cr(llX | + lpa| + [p2]). (2.13)



Proof:

Arguing by contradiction we assume that the statement in lemma 2 does not hold.

Then we can define sequences Ly,, 0" = (07, 0%), (X, u¥, uy) € ExIR? such that ||(X,,, w7, u3)|| =
1, L, — +o0, 5 — 07 > L,, and

I1fo” (g + gt ) X — pittigye — pigg || — 0, (2.14)
(X, g7 )| + (X, gy )| — 0. (2.15)

Using the invariance of fy and of the scalar product (-, -) under the action of IR we can assume
that 67 = 0 for any n.

Since || X, ||, |7, |15] are bounded, up to a subsequence X, — X, u} — p1, puhy — po. We are
going to show that X =0, = 0.

Let g € E be fixed. From (2.14) we get that:

(fo" (ug™ +ugg ) Xn, g) — i (iig™ g) — 15 (g, g) — 0. (2.16)

Since D?V(0) = 0 we have

(fo" (ug"™ +uff) Xng) = (Xnog) — /}RDszén + gy ) Xng

Xn,g)—/}RD2V(U§")Xng—/RDzV(ueLf)Xng.

Since uOL" — g in L™, by the uniform continuity of D?V on bounded subsets of IR",
D2V (ubm) — D2V (ug) in L*°. Consequently,

/D2 ng—>/ D?*V (ug) X (2.17)

Next supp “gf C [-0% — L,/4,—0% + L, /4] and 65 > L, hence supp u(%? C (—o0,—3L,/4).
Therefore, since DV (0) = 0,

’/ DV (ugy)Xng
R

—3L, /4
= / DV (ugi) X g
— 00 2

< 1DV (ugg)loo |1 Xl l2llgll 22 (~ o0, ~32., /2)-

[| X5||2 and ||D2V(u5§?) |co being bounded we get

/D2 uen X,g — 0. (2.18)

as n — 0o. Moreover X,, — X, ué“” — g and uan — 0 imply

(Xny9) = (X,9),  wi(igm,g) = mlio,g),  ps(igy,g) — 0. (2.19)
From (2.16),(2.17),(2.18) and (2.19) we get

(X,g) + /  DAV(u0) Xg = i g) =0

10



Since this equality holds for all g € E we have that:

o (o) X = p o (2.20)

Since f{(uo) is symmetric and 4y € ker f§(uo) (2.20) implies that pq = 0 and X € ker f/(ug) =
TZ,, = IRiy. Now from
(X, 7:LOL”) —0

we have (X, 1) = 0. Hence X = 0.
Thus X,, — 0 and p}* — 0. Similarly it can be proved that (—60%) * X,, — 0 and ps = 0.
Now, from (2.14), since uf and pf — 0 we have:

|| Xnl? — /}R D2V (ub) X2 — /]R D2V(u§§)X§ — 0. (2.21)

We can write
A
/ DQV(ug")X,%:/ DQV(ug")Xﬁ+/ D2V (uf~)X2.
R —A [—A,A]e

Since Hué"HLoo([,A’A]c) — 0 as A — oo independently of n and D2V (0) = 0, the latter term in
the sum tends to 0 as A — oo independently of n. Moreover, for A fixed, the former term tends
to 0 because || Xy ||r2(j—a,4)) — 0. Hence

/ D2V (uf)X2 = 0.
R
Similarly, using that (—6%) * X,, — 0 we get
/ DV (ug) X2 — 0.
R 2
These properties and (2.21) imply that || X, || — 0, hence || X, ||+ |p}|+|p5| — 0, which contradicts

[ Xnll + |pf] + |p3] = 1. O.

Remark 2 It is easy to see that f{ is uniformly continuous on bounded subsets of E. Hence there

exist positive constants 61 < dg,Co > 0 such that for all L > Ly, for all 6 = (01,02) such that

0y — 61 > L for all v € E with ||v|]| < §
I oOHT

(v, a) 1(0,0,v)

(X s o] = Coll(X g, o) -

L
Since

is of the form Id + compact, the latter estimate implies that it is invertible.
9(v, @) (0,0,0)

In order to build a natural constraint Zy,  for f, close to Zp,, we first build a natural constraint
My, diffeomorphic to Z,, for the unperturbed functional f.
We can prove that:

Lemma 3 There exists Ly > Ly such thatVL > Lo there exists a C* function w(L,-) : {(01,02) | 02—
01> L} — {ve E | ||| <é1} such that w(L,0,0;) € (if ,ug )" and

folug, +uf, +w(L,01,605)) = arig, + asig, (2.22)

for some (o, a0) € IR?.
Moreover supy g, ,)10,—0,>r3||W(L, 01,02)|| — 0 as L — 4o0.

11



Proof:
In this proof we shall use the following abbreviation:

OHL
vl (0, w) = € L(E xR?)
(v, @) 1(0,0,)
We have to find w, a1, ag such that
HY (0,601,605, w,a1,a3) = 0. (2.23)

In fact H{ = 0 means that f(ug +ug, +w(L,01,02)) = arif + ozt and Hy = 0 means that

w € {ig,, i)

Let Bs C E x IR? be the ball in E x IR? of center 0 and radius §: Bs = {(w, a1, a3) | ||w]| +
|ar| 4 |ae| < 6}, By lemma 2 and remark 2,

1
VL > Ly, ¥(01,02) such that 6y — 0, > L, ||[(b*)7(0y,02,0)|| < o (2.24)
1

In order to solve equation (2.23) we do not apply directly the implicit function theorem because
HE(0,601,05,0,0,0) # 0; we only have by (2.5) that H*(0,6;,65,0,0,0) — 0 if 6 — 6; > L and
L — 400. We will solve equation (2.23) by means of the contraction-mapping theorem, proving
that, provided L is large enough and § small enough, for all (6;, 0) with §5—6; > L there is a unique
(w(91, 92), 051(91, 92), 052(01, 92)) S B5 such that HL(O, 91, 92, w(01, 92), (65} (91, 02), 042(91, 92)) =0.

Indeed HX(0,01,0,,w, a1, as) = 0 is equivalent to R(w, a1, as) = (w, ay, as) where:

R(w, o) = —(b")71(8,0)H"(0,6,0,0) — (b%) (8, 0)(H" (0,6, w, o) — H*(0,6,0,0) — b" (6, 0) [w, a]).
We will find Ly and 6 < §; such that if L > Ly and 05 — 67 > L then
e (i) R(Bs) C B?;

e (ii) R is a contraction on Bs, more precisely:
1
V(w, a)a (wlvo/) € Bs ||R(wa 04) - R(w/’ O/)H < §||(w’ a) - (wlva)H'

Since f{ is uniformly continuous on bounded subsets of E, we can choose 0 < § < §; such that:

VL > L1,¥8 = (01,0) with 6, —6; > L and Yw with |jw|| < 6, ||b" (8, w) —b"(6,0)]| < % (2.25)

Moreover by (2.5) there is Ly > Ly such that:

VL > Ly and V6 = (6,6,) € R*with 6, — 6, > L, ||[H"(0,6,0,0)|| < % (2.26)

Let L > L and (491, 92) with 02 — 61 > L be fixed.
Using (2.24), (2.25) and (2.26) we now prove (i). V(w,a1,a2) € Bjs one has (setting o =
(a1, a2)):
[R(w, )|l < || = (")~(8,0)H*(0,6,0,0)]]
+ ||(bL)_1(070)|| : HHL((LH,’LU,Oz) - HL((LQ,O,O) - bL(9>O)[w’O‘]||
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+ Ci||HL(o,0,w, o) — H%(0,6,0,0) — b(6,0)[w, a]||
1

= C 3
o 1, [t L
— ,+7||/ (b7(01, 02, sw) — b~ (01,02,0))[w, ar, c]dsl|
3 CiJo
s 1 [t
S *+7/ ||bL(9179273w)_bL(91792’0)||5dS
3 Ci1
s 1 [t¢ 26
< 4= —dds = —.
- 3 Cl/o 3773

Still by (2.24),(2,25) and (2.26) we prove (ii): Y(w, a1, az2), (W', &}, ab) € Bs one has:

| R(w, @) = R(w', o) 1(6%)7(0,0) (H*(0,0,w,0) = H*(0,0,w',0") = b"(8,0)[(w, a) — (', )]

1
< Cil”/o (bL(Q,’w + S(w’ _ w)) _ bL(G,O))[(w,a) . (wl,a/)]dsH

e o 1 o
< B 1 - |
< Cl/o 3 [|[(w,a) = (w',a')||ds 3H(w70‘) (w', )|

Applying the contraction-mapping theorem we conclude that there is a unique (w(L, 61, 62),
Oél(L, 917 92), OzQ(L, 91, 62)) € B5 such that HL(O, 917 92, w(L, 91, 92), Oél(L, 917 92), Ozg(L, 91, 92)) =
0.

Since HX(0,01,6,,0,0) — 0 as 6 — 01 > L and L — +oo, by the properties of R we get that
w(L,01,02) — 0as s —0; > L and L — co.

We now justify that w(L,) is C*. Indeed
HL(Oa 917 027 U)(L7 91) 92)7 CYl(L, 917 62)) Oé2(L, 913 92)) = 07
HL(0,-) is a C! function of (6, w, «) and for ||(w, oy, az)|| < §

OHT
(v, a) 1(0,6,1)

b(0,w) = € L(E x R?)

is invertible. Hence the implicit function theorem can be applied and w(L,-) is C*.O

Remark 3 Since w(L,-) is C*, w € (4§ g, )" and ||w|| < 6o we derive by lemma 1 that My, =
{u(g1 + ué +w(L,01,02) | 02— 01 > Lo} is a C* submanifold of E of dimension 2 and its tangent
space at uf, + uf, +w(L,01,02) is transversal to (if g )& This implies that My is a natural
constraint for fo (see [1]).

Now we can state another lemma which enables us to build the natural constraint Z;, . for f..

Lemma 4 There exists ¢g > 0 such that VL > Lo there is a C' function w(L,-) : (—eo,€0) X
{(91,02) € B2 | 0y — 01 > LQ} — {’U eF | HUH < (51} such that:

L4 QI/(L,O791,92) = 0?'
d fe/(ugl +u9Lg +w(La01702> +@(L,E,01,02)) € <1},£’17ﬂ5’2>;

o @(L,e,01,6y) € (i iy )"
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Moreover there exists a positive constant Cs such that ||w(L, €, 0)|| < Csle| for all L > Ly and
0= (91792) such that 65 — 01 > L.
We will also use the notation: w(L, ¢, 61,02) = w.(L,01,02).

Proof: The proof is very similar to that of lemma 3. We don’t use directly as in [1] the implicit
function theorem because we have to justify that for any € € (—eg,€g) the function @w(L,e, ) is
defined and C! on the whole set {(01,0:) € R | 62 — 6, > L}. We can apply the contraction
mapping theorem uniformly on {(;,60s) € IR? | §3 — 01 > Ly} because G” is bounded on bounded
subsets of F. O

Finally we define for L > Lo and |e| < €:
ZL,e = {ué + ueLz + w(L,91,92) + 1])([1,6,91,92) | 0y — 01 > L}

By lemma 1, Zy . is a C'! 2-dimensional submanifold of E and its tangent space at “51 + ug“Q +
w(L,0y,02) +wc(L,01,0,) is transversal to (if g ).
Hence, in the same way as in [1], it is easy to prove that:

Lemma 5 Z; . is a natural constraint for fe.

Remark 4 In the previous arguments we could have considered a more general perturbation term
such as: W(e, t,u) = eW(t,u) + o(e)Wi(e,t,u) where W and Wi satisfy hypotheses (W1). (See
also [1]-[2]).

2.4  Expression of f. on Z;

By lemma 5 we are led, in order to find 2-bump solutions, to look for critical points of the functional
fe restricted to the 2-dimensional manifold Zy .
In the next lemma we find a suitable expression for the functional f, restricted to Zp, :

Lemma 6 For L > Ly and |e| < €y, fez,.. has the following form.:
felug, +ug, +w(L,01,05) + we(L, 01,60)) = 2b+ e(G(uo, ) + G(ug,)) + oL (1) + O(e?).  (2.27)

Proof:

Let L > Ly, |e| < € and 03 — 6y > L. Since w. € (ig ,uf,)", by lemma 3, (f§(ug + ug +
w(L,01,602)),we) = 0; by lemma 4 ||we|| < Csle|. Moreover, since fi and G’ are bounded on
bounded subsets of E we can write:

Je(uf, +ug, +w(L,01,02) + we(L,01,02)) Jo(ug, +ug, +w+we) + eGug, + ug, +w + we)
Jo(ug, + ug, +w) + (folug, + ug, +w), @)
O((||@e||2) + €G(ug, + ug, +w) + €O(||wc]])

fo ung + ugz +w) + eG(ugl + uGL2 +w) + O(e?).

=

=+

There results that:

Je(ug, +ug, +w(L,01,02) + we(e,01,02)) = 20+ e(Gug,) + Glug,)) +
(fo(ug, + ug, +w) = fo(us,) = folue,)) + €(Gug, +ug, +w) — G(ug,) — G(ug,)) + O(e?).

Now, by lemma 3 ||w(L, 01, 602)|| = or(1) hence:

folug, +ug, +w(L,01,05)) = foug, +ug,) +or(1) = folug,) + fo(ug,) +or(1).
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In the same way
G(u(]g;1 + u52 +w(L,0:1,6,)) = G(ué) + G(ué) +or(1).

Moreover

folugy) + folug,) = 2b = fo(ug,) + fo(ug,) — fo(ua,) — fo(us,) = or(1)
and
G(ug,) + G(ug,) — G(ug,) — G(ug,) = or(1).
So we get formula (2.27) .0

It turns out that G(ug) is nothing but the Melnikov primitive:

Glug) =T(0) = — /IRW(t, uo(t + 0))dt. (2.28)

2.5 Existence of infinitely many homoclinic solutions

This paragraph is devoted to the proof of theorem 1 and to a more general result on the existence
of infinitely many homoclinic solutions of (2.1).

Proof of theorem 1:

Choose 0 < €1 < ¢ so small that in formula (2.27) |O(€?)| < |e|n/6 for |e| < €1, € # 0. Let
€ € (—€1,0) U (0,€1) be fixed. Choose L. > Lo such that VL > L. one has in formula (2.27)
lor.(1)| < |€e|n/6. We denote by f. the function of 2 real variables (61, 6s) defined by f(01,62) =
fe(ugl 4+ ué’z + ’U)(L, 91, 92) + ’LT](L, €, (91, 02))

Since Zp . is a natural constraint for f. each critical point (6;,62) of fe provides a critical
point u, of f. given by u, = ugl + ugz + w(L,0,02) + w(L,0,02). Since ung_ — ug, as L — +oo,
Supyg,—g, >3l [w(L; 01,02)[| — 0 as L — +oo and [|w,(L, 01, 02)[| < |e|Cy, the critical point e is
located near ug, + ug,. So it is enough to verify that a local minimum ( if € > 0, otherwise a local
maximum if € < 0) of f. can be found in U;, x Uy, for each (iy,ip) € Z* such that ¢;, —d;, > L.
We make the proof for € > 0.

By formula (2.27) and our choice of €; and L., we have that:

felai, @) < 26+ €(D(ay) + Dlai) + €7
Moreover Y(01,02) € (U;, x U;,) we have from condition 1 that:
['(01) + T(02) = T(as, ) +T'(ai,) + 1.

Therefore, using once more formula (2.27), if (61,02) € 9(U;, x U;,) we have:

Fe(01,02) > 2b+ €(T'(61) + T'(62)) — eg

2 _
> 2b+ G(F(ail) + F(aiz)) + 5677 > fE(ailvaiz)'

The latter inequalities imply that f. attains its minimum at some point (61, 6s) in U;, x U;,. The
proof of theorem 1 is complete.O

Remark 5 Note that L, — +o0o as € — 0. In section 3, using the exponential decay property of
ug, we will show that it is possible to take L. = —K In|e| for some positive constant K.

15



Remark 6 It is also possible to obtain solutions u. of (2.1) located near ug, + ug, where 61 and
02 are two maxima of T'.

Now we give some examples of perturbations W such that the Melnikov primitive I' : R — IR
satisfies condition 1.

e Periodic perturbation:

If the perturbation term W (¢, u) is T-periodic in time then T is T-periodic. Any non-constant
periodic function I satisfies condition 1.

e Quasi-periodic perturbation:

If W(t,u) is quasi-periodic in time then I' is quasi-periodic too. It is easy to show that a
non-constant quasi-periodic function satisfies condition 1.

e Almost-periodic perturbation:

Finally let us consider a perturbation term W (¢, u) almost-periodic in ¢ uniformly with respect
to x in compact subsets of IR".

Let H(W) c C(IR x IR",IR) be the closure, for the topology of uniform convergence on
compact sets, of the set {W (- +7,2) | 7 € R}.

Bochner’s criterion state that a function W (¢, ) is almost-periodic in ¢ uniformly with respect
to x in compact sets if and only if H(W) is compact in C(IR x IR",IR) for the topology of
uniform convergence on sets IR x K with K compact.

Using Bochner’s criterion it is easy to see that if the perturbation W (¢,u) is almost-periodic
in ¢ uniformly with respect to x in compact sets then the Melnikov primitive I' is almost-
periodic.

Therefore I' : IR — IR satisfies condition 1, provided it is non constant.

It is straightforward to generalize the above construction to prove the existence of k-bump
solutions as stated in the following theorem:

Theorem 2 Let condition (V1), (Va), (W1) and condition (1) hold. For all k, for ¢ # 0 small
enough there exists L. such that if min1:1,.._,k71(cil+1 —d;,) > L. then fe has a critical point u.
located near some ug, + ...+ ug, with 0, € U;, forl=1,... k.

As a consequence of theorem 2 we have the following corollary:

Corollary 2 For all k there exists € > 0 such that Ve € (—€,0)U (0,€) equation (2.1) has infinitely
many k-bump solutions.

However the constants L. and € given by theorem 2 can depend on the number of bumps k& so
that theorem 2 cannot be directly used to obtain the existence of solutions with infinitely many
bumps. The bound that we obtain for ||u. — Zleuei || is not independent of the number of bumps
k. We will show in the next section how to derive estimates independent of k by using a different
norm. We shall find solutions u. close to Y up, only in L°-norm but not in H'-norm. See also
[17].
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3 Existence of solutions with infinitely many bumps

In this section we show how to modify the previous lemmas in order to obtain constants € and L.
independent of the number of bumps k.
In the sequel the symbol 6 will mean 6 = (6, ...,6;) € IR*. We consider the manifold

ZF = {uf, + ... +uj, | min;(0;41 —6;) > L}.

Its tangent space at ugl +...+ ugk is <u51 Y ,u£k>.
For any 0, < ... < 6 we will consider the norm on E:

ol = maxics,i [ [ul? il

i

where 0 0 p ) 0o ; ;
I = (%,+OO)7L, - (* z+;* i = z; 1—1) and I, = (7007%)_ In the
sequel || - || will still denote the H'-norm.

Since for every u € E we have
lulg < [|ul® < Klul3,

the norm |- |g is equivalent to the H!'-norm for fixed k. Moreover the following uniform bound can
be easily proved : Vk € IN, V(0y, ..., 0%) with min;(6; — 6;_1) > 1:
[lulloo < 2ulo.

We now prove a property of the norm | - | which will be useful later. We use the convention
91',1 = —o0ifi=1 and 9i+1 = 400 ifi=k.

Lemma 7 Let 0 = (61,...,0;) € IR* satisfy min;(0;41 — 0;) > 8. For all X € E there exist
ie€{l,...,k} andY € E such that supp Y C [—(0; + 0i41)/2 — 2, —(0; + 0;-1)/2 + 2] and

() Y]] <1 and | Xy < 5(X,Y).

Proof: Let miiy1 = —(0; + 0i11)/2. By the definition of | - [g, there is i such that [X[y =
[ X lw2(myis1miii)- Now let R be the function defined by R = 1 on [mji11,mi:-1] , R =0
outside (m; ;+1—2,m;;—1+2), R is continuous and linear on each component of [m; ;41 —2,m; ;—1+
2]\ (myi41,m4i-1). We have:

(X,RX) = / RIX|>+ RIX|* + RXX
R
mi—1,i - ) Mt mz'fl,i+21 .
> [Epae - 7 Jpgix- [ Sk
My i1 mi it1—2 mi_1,i

Y

1 1 1
XI5 — ;IXT3 - 71X = 51X03

(We just use here that 1/2|X[|X| < 1/4(|X|* + |X|?)).

By the same way we easily get
|RX|]” < 5 X3

Now set Y = (1/||RX||)RX. We get (X,Y) > (1/21/5)|X | and the proof of lemma 7 is complete.O

We are going to state some easy properties of fy, fe, G which will be required in the sequel. The
proofs of these properties can be found in the appendix.
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Lemma 8 Vb > 0 3C(b) > 0 such that: Ve with |¢| < 1, Vs,r,v € E with ||$||cc, ||7|lcc < b we
have:

o () [fe(s+1) = fe(s) = L < CO) [ g [7l13] + [7[]s];
o (ii) [(fi(s +7) = fi(r),0)| < CO) [ g [8][0] + |s][v].

Lemma 9 There is a positive constant Cy such that for all L > 8, Yk, V(b1,...,0)) € IR* with
min;(6; — 0;,—1) > L, Yv € E such that |v|g < 1 we have:

o (i) [fo(ug + ... +uf +v)lo < Cu
o (ii) |G'(ug + ... +uf, +v)lo < Cy;
o (iii) [ff'(ug + ... +uf +v)X|g < CulX|g, VX €E;
o (iv) |G"(ug + ...+ uf +v)X|o < Cy4|X|p, VX €E.

Moreover there is a function r satisfying lims_or(s) = 0 such that VL > 8, Vk, V(61,...,0;) €
ZRk with min; 9i+1 —0; > L,YveFE

o (V) |(fg/(ug, + - +ug, +v) = fi'(ug, + ... +ug, )Xo < r(Jv]s)| X]o.
Lemma 10 o (i) There is a positive constant Cg such that
lluo — ug || + ||io — g'|| + [0 — iy || = O(exp(—CeL));

o (ii) There is a positive constant C7 such that for all L > 8, for all k, for all (01,...,0k)
with min; (0,41 — ;) > L one has:

|fo(ug, + ...+ ug)lo = O(exp(~CrL));
o (iii) For all L > 8, for all § € IR* such that min;(0; 1 — 6;) > L, for all v € E with |v|g < 1
£ (ug, + .+ uf, + )Nt + .+ Al )] = O(max [i]).
Moreover if D?V is locally Lipschitz continuous then:
\fo(ug + .+ uf o)Al + .+ At )|o = max [A:|O(Jv]e + exp(—CsL))
where Cg 1s some positive constant.

3.1 The natural constraint Zfﬂe

First we prove a version of lemma 1 in which §y is independent of k. For § > 0 let:

VIF ={(v,0) € Ex R | min; (0341 — 6;) > Lyv € (af,,...,ak )", [vle < 0.
Let h™ : V)" — E be defined by h%(v,01,...,05) = uf +...+uf +o.
We shall denote by | - |g also the norm on E x IR® defined by:

(X, g, ) lo = max{| Xlo, [pal, - - [k}
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Lemma 11 There is 6o > 0 such that, if L > 8 then Yk € IN, h* is a diffeomorphism from Vgo’k
onto a neighborhood of Z¥ .

Proof:
It goes along the lines of the proof of lemma 1. We use here the new norm |- | in order to have

constants independent of k in the estimates.
Let UPY = {(v,601,...,0k) € Ex RY | ming (041 — 6;) > L, |v|g < 3}
Let \I/L USk - E x RF be defined by:

UE(0,v) = (ug, +...+ug, +v,(Ug,v),...,(0F,v)).

(i) We first prove that there is §y > 0 such that if L > 8 then for all k, UL is a local
diffeomorphism on Ugo’k. Indeed we have:

Aoy TH (X, My, M) = (At + .o+ Mg, + X, (0F,, X) + Mg, v), ..o (4g, X) + Me(iig,v)).
Let B denote the linear operator defined on E x IR¥ by:

B(X, A1, Ae) = (X + Mag, + o+ g, (X, 06, (X, 08).

Since
supp g, C I = [—(0i1 + 0;)/2,—(0; + 0:—1) /2] (3.1)
we have: |(iig ,v)| <|liig || - [v|s. Hence as in the proof of lemma 1:
(oo™ — B)(X, A1, A)lo < SoC(X, Aty ..o, Al (3.2)

For all X € E we can write X =Y + ,ulugl +... 4+ Mkugk where Y € (ué, .. u9k> Thus

IB(X, A1, Ak)lo = max(|Y + (4 M)ag, + -+ (e + Mg, o, [ag 1Pl - [1ag |12 x))-
Now we have

Y+ (4 A)ag, + - (e + Ae)ig, lo = max (||Y + (1 + Ao)ig, 0)-

Moreover, since Y and g are orthogonal in W12(I;):

1
1Y+ (s + N 0 2 5w + s+ Adlllag 1)

Hence
Y+ (1 + A)ag, + o+ (e + Ar)ig, o > C'([Y |o + maxi|ps + Ail)

and as in the proof of lemma 1 we get:
|IB(X, 155 A 0)]0 = C" (X, A1, -+, Ak)a- (3.3)

Choosing 69 > 0 such that 6oC < C”/2 we get by (3.2) and (3.3) that for all k, for all L > 8,
for all (v,6y,...,0;) € Ugo’k

ol
|d (.0, ,.. 9,9)1/) (X, A1,..0,A )|9>—\(X Aty Ak)]6e (3.4)
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Since d(mgh___’gk)’l/)L has the form “Id + compact” we derive from (3.4) that it is an isomorphism

and 9! is a local diffeomorphism on Ui“’k.

(ii) We must justify that, provided &y is small enough, 1% is injective on Ugo’k. We have that
for all ¥+ > 0 there is n > 0 independent of k,L > 8, such that for all (v,6s,...,0),
(W, 0}, ...,0,) in UF max(jv —v'|g, |01 — 6], ..., |0k — 6}]) <7 implies

(.01, P" = i 0,0y V™) (X AL M) 0 <A AL, Ak o

This property can be easily checked using the fact that for n small enough and L > 8, |6,—6;| < n
implies supp ueL U supp uﬁL,,_ C I; and that ué —ug,_ — 0, uGL —u'g,_ — 0 as |#; —0.| — 0 independently
of L > 8. 1 ' '

This uniform continuity property combined with (3.4) yields the existence of v > 0 ( indepen-
dent of L, k) such that:

0 < max(|v—v'|g, |61 — 01,10k — 04]) <v=0E(v,01,...,0) # E(v,0],...,60}).

The proof of injectivity ( provided dy is small enough ) now presents no difference with that given
in lemma 1, so we omit it. O.

As in section 2 we consider the following function:
HY : RxR"x ExRF —» F x R*
with components H¥ € F and HY € IR* given by:
i=k
H{‘(e,@l,...79k,v,a17...,ak) = fe’(ué1 —|—...—|—u{;‘,c +v) — Zizlaiué,
HZL(Eaelv"'70ka7]aa17"'7ak) = ((’l],’llgl)7...7(v,ugk)).

We prove here a modified version of lemma 2 in which the constants can be taken independent
of k.

Lemma 12 There exist positive constants Cy, L1 such that for all L > L1 Yk, for all® = (01, ...,0;)
with min; (0; — 0;—1) > L and for all (X, p1,...,ux):

> Col(X, p, - - -, fi)o- (3.5)
0

OHY
| (Xvulv"'vp’k)

(v, ) 1(0,6,0)

Proof:
Arguing by contradiction we assume that the statement in lemma 12 does not hold.
Then we can define sequences L, kyn, 0™ = (07,...,0} ), (Xn,puf,. .., pu ) € E x IR*" such

that L, — +oo, min; (0} — 0F') > Ly, |(Xn, pf, ..., py )en =1, and:
OHEn
(Xn, 3y spp )| —0, (3.6)
(v, @) (0,6 0) ' "o
which means: -
| fo” (ug + .. +u9Lk )X = Y pltig|on — 0 (3.7)
n i—1 v
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and
max;—1,..., |(Xn, tge)| — 0. (3.8)

By the definition of |(Xy, uf, ..., uy )|en thereis i, € {1,...,k,} such that

1< Xullwrzar ) + |4i,
where I = (—(07 + 07 1)/2,—(07 +07 _1)/2).

in in—1
Using the invariance of f and of the scalar product (-,-) under the action of IR we can assume
that 07 = 0 for any n. Hence [~L,/2, L, /2] C I]' . Define a sequence R,, of cut-off functions such
that R,(IR) C [0,1], R, = 1 on I, R, = 0 outside I’ + [~2,2] and R, is continuous and linear
on each component of (I]' + [-2,2])\I]'. Set Y, = R, X,,.
As in the proof of lemma 7 we have

<2 (3.9)

1Y, ]? < 5|1 X,|2. < 5.

Hence up to a subsequence Y, — X € E. Note that X,, = Y, on [-L,/2,L,/2] and

lim,, oo Ly, = +00. As a consequence X, — X in L? (IR).

Since | | is bounded we can also assume that p? — p € IR. We are going to show that X =0
and p = 0.
Let g € E be fixed and have its support in a compact interval J. We have from (3.7) that:

i=ky,

(o (g + -+ ugg ) Xonyg) =y "l (i, g) — 0. (3.10)

=1
Now for n large enough supp g C I}, which implies that supp g N supp ug,_f} = () for i # iy,.

Hence, since 6;, = 0, (3.10) is equivalent to:

(X 9) - / D2V (W) Xng — (i, g) — 0. (3.11)
R

We have ué " — ug in L. Hence, by the uniform continuity of D?V on bounded subsets of IR,
D2V (ufm) — D2V (ug) in L. Therefore since X,, — X in L? (IR) and g is compactly supported,

loc

/DQV(ugn)Xng—»/ D?V (up)Xg.
IR IR

Furthermore u? (4h™, g) — p(io, g) and for n large enough (X,,9) = (Yn,g). So (X,,g) —
(X,g) and we can derive from (3.11):

(X, 9) + / D?V (ug) X g — u(tio, g) = 0. (3.12)
R
Since this equality holds for all g € F with compact support we get:
fé/(UQ)X = /.Mlo. (313)
Since f{ is symmetric and 4o € ker f{/(uo) (3.13) implies that = 0 and X € ker f{ (uo) =T Z,, =

IRitg. Now from (3.8):
(Yo, ™) = (X, i) — 0.

Hence (X, i) = 0 Finally we get X = 0.
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To get a contradiction we write that from (3.7)

i=kn

(o (ug™ gy )X, Yo) = > "l (g Ya) — 0

which implies, since supp Y, N supp ugff = () for i # 4,, and (Y,,,uy™) — O:
(X, Yn) —/ DV (uf) X, Y, — 0. (3.14)
R

is bounded in L' norm and tends to 0 in L}, .. Moreover using that

Now X,Y, = R, X
t)] < |up(t)] and |ug(t)] — 0 as |t| — 400 we can write

2
D2V (0) = 0, Juf™( |
||D2V(u€n)”L°°[—A,A]C <Cy

with lim4_, . C4 = 0.
Hence:

/ D*V (uf) X, Y, — 0.
R

This latter limit and (3.14) implies that (X,,Y;) — 0.

Now
I +[-2,2]
> Xl — < l1Xall? Xl
il n W1,2([;;) 4 n W1,2([;Ln_1) 4 n W1,2([;Ln+1)
1 1
> ||Xn|\124/112(1;;) - §|Xn|§n 2 ||Xn||%4/1«2(1;;) 5

This contradicts (X,,Y,) — 0 because of (3.9) and the fact that x' — 0. O

Remark 7 By lemma 9-(iv)-(v) it is clear that lemma 12 implies the following properties of HE:

Provided 6y and €y are small enough we have:

e (i) For all L > Ly, for all € € (—eg, €), for all 6 € IR* such that min; (0,41 —0;) > L, for all
OHL

v € E with |v]p < g, =——
(v, a) |(e,6,v)

is an isomorphism and:

Cy

OHT
(v, @) |(e,6,v)

- 2
1 (Xopspe)| < A UK pay o)
0

o (ii) For all L > Ly, for all € € (—ey, ), for all 0 € IR¥ such that min; (0,41 — 6;) > L, for
all v,v' € E such that |vlg,|v'|g < b0, for all o, o’ € IRF

C
|H(e,0,v,a) — HE(€,0,0",0)]g > 79|(v —v a—a)lp.
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Remark 8 It can be readily checked that if a sequence w, with w, € E is bounded in L*° and
converges in Wlf then f!(wy) converges in Wll’f and is bounded in L°°. Hence it makes sense to
define f!(u) € W2 N L>® forue Wh*N L™,

loc loc
Let (...,0_k,...,00,...,0k,...) be an infinite sequence such that 0iy1 —0; > L. We can still
define the norm |- |g. Note that 32\ ="ul € W2 0 L> and that |32

i=—oo loc

2_700
It is easy to see using property (Pp) of lemma 7 that if |vlp < +00 then |f€(zzzf§ué +
v)|g < +00. Now since in remark 7-(ii) the estimate is independent of k it clearly implies that if

v, v € V[/lzc2 satisfies |v]g,|v'|g < 6o and Vi € Z, (v,4f) = (v',ig ) = 0 then

Qb o) =D, joetg, = fY . ug +0)+) . Biigle > (\v 'lo+supla;—i)).
Lemma 3 of section 2 can be modified in such a way that Ly, does not depend on k. We have:

Lemma 13 There exists Ly > Ll such that for all L > Lo, for all k there exist C1 functions w(L,-)
and o;(L, ) defined on {6 € IR* | min;(0;11—0;) > L} such that w(L,01,...,0k) € (uf ... uf )",
|w(L,01,...,0k)]e < do and

k
folug + -+ ug, +w(L,01,...,0,) = > (L, 0)ig,. (3.15)
=1

Moreover there are constants C1g and Ciy such that |w(L,61,...,0k)|l¢ = O(exp(—CioL)) and
max; |a; (L, 0)| = O(exp(—C11L)).

Proof:

The existence proof is exactly the same as for lemma 3. The only change is that we use for
each 6 = (61, ...,0;) the norm | - |9 to get the existence of w(L,61,...,0k).

The C! regularity of w and of «; is as for lemma 3 a consequence of the implicit function
theorem since for any fixed k the | - |y norm is equivalent to the || - || norm.

So it remains to justify the estimates on |w|y and |ay].
The functions w,« = (o, ..., ) are defined by the equation H*(0,6,w,a) = 0. Therefore, by
remark 7,

| — HL(0,0,0,0)|¢ = |[HL(0,0,w,a) — HX(0,6,0,0)|y > %Kw,al,...,ozk)\g.

Hence 5
[(w, a1,y ... ar)]e < F|HL(O,6‘,0,0)|9.
9

Now by lemma 10
[H"(0,0,0,0)lp = |fg(ug, + -+ +ug, )l = O(exp(~CrL))

and we get the estimates. O
Now we can state another lemma analogous to lemma 4.
Lemma 14 There exists €; > 0 such that for every k, for every L > Lo there exist C' functions

w(L,-) and &;(L,-) (1 < i < k) defined on (—e1,e1) x {(01,...,0k) | min;(6;41 — 6;) > L} such
that:
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o w(L,Ovela s 70k) =0;

o fllug +...+uy +w(L,01,...,0k) +w(L,eby,...,0) = S au(L, €,0)uy ;

° ’lj](L,E,Hl, - ,Hk) S <1'L£’1,. .. ,ﬂé’k>L, |7IJ(L,6,91, . ,ek)‘g < (50.

Moreover there exist positive constants Cio and Chs such that, for all L, for all k, for all
(01,...,0k) such that min;(0;11 — 6;) > L, |w(L,€,61,...,0;)g < Ciale|, max;|&;(L,e0)] <
Ciale| + O(exp(—Ci3L)).

We will use also the notations w.(L,01,...,0;) = w(L,¢€,01,...,0,) and w.(L,0) = w(L, ) +
we(L,0).

Proof: As for lemma 13, the existence and C! regularity proof can be easily carried out by
the contraction mapping theorem and the implicit function theorem, using remark 7 and lemma
9-(iv)-(v). We will only justify the estimates on |w.(L,0)|p and on |d&;(L, €, 0)].

In fact by remark 7
|H(0,0,w.(L,0),a(L,¢,0)) — H*(0,0,w(L,0),a(L,0))|y > %Kw(g €,0);a(L,¢,0) — oL, 0))]o.

Now
HL(079,U/(L,9)7OZ(L, 0)) =0

and
|H"(0,0,%(L,€,0),a(L,€,0))|o = [eG'(ug, + ... +uf, +d(L,e0))o

The desired estimates follow by lemma 9-(ii).0

Finally, for L > Ly and |e| < €1, we define:
ZF e ={ug, +...+uf, +w(L,01,....00) + 0(L,e,01,...,0p) | ming(0;41 — 0;) > L}.

By lemma 11 Z f} . is a C! k-dimensional submanifold of E diffeomorphic to Z¥.
Now it is easy to show that:

Lemma 15 Zf)é is a natural constraint for f..
We finish this subsection with a lemma providing an estimate on Jygw, which will be used later.

Lemma 16 For L > Ly and 0 € IR® such that min; (0,41 — 6;) > L, for € € (—e1,€1), for all
(A,...,\p) € R”:
0w, 0w,
M—(L,0)+ ...+ \e—(L,0
L 0) + o+ N (L,0)

= O(max |A;]).
0 K2

Moreover if D?V is locally Lipschitz continuous then we have the sharper estimate:

b .\ i
20, T Mo,

A1

= O(e + exp(—C14L)) max | \;]
0 1

for some positive constant C14.
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Proof: By the implicit function theorem we have:

(81116 8&6) — OH* ]_18HL
801 ’ 891 B 8(1},0[) 801

(670712)67&6)'

Hence using remark 7 we can obtain:

Db, O, 2 |~ oHE
A A < N (e, 0,0, ac 1
190, + +k89k9,09; 30 (€ wa)0 (3.16)
Now
ko oHL k k
ZM—%? (€,0,10c,6c) = f/(ug, + ...+ ug, + D) Aitig) = > Nidie g,
i=1 ? i=1 i=1

Hence by lemma 10-(iii) and the estimate on max; |&; | we can write

k

L
Z/\iai@’e,qzje(L,e),de(L,G))

2 2, = O(m;fix|)\i|).

0

Moreover, if D2V is locally Lipschitz continuous, then, by the estimate on ||, we have:

k

HL
Z Ai%(e, 0,wc(L,0),a.(L,0))| =max|\]|O(e + exp(—CL))
i=1 v 9 ¢
for some positive constant C'. Furthermore
k
OHY WL - L -
ZA,TQQ = (M (iig,, @e), - . ., A (iif, , De))
i=1 ¢

and |(ig ,wc)| < ||ig || - [elo = O(e 4 exp(—C’L)) by lemmas 13 and 14. Finally we get

k
OHL o
ZAiT&(e,G,wmae)

i=1

= O(max |A[)
9

and if D?V is locally Lipschitz continuous then

k

L
Z)\'ai(ea07ﬁ)€7&€)

50 = O(e + exp(—C" L)) max |\;].
i1 i !

0

From (3.16) we get the desired estimates.

3.2 Expression of f. on Z],

By lemma 15 we are led, in order to find k-bump solutions and then solutions with an infinite
number of bumps, to look for the critical points of the functional f. restricted to the k-dimensional
manifold Zf’i.

We will need the following lemma, whose proof is given in the appendix:
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Lemma 17 There is a positive constant C15 such that for all® = (01,...,0;) € IR* with min; (0;41—
Vie{l,....,k =1} |[we(L,0)|lwr.2¢5,) = O(exp(—=Ci5(0i+1 — 6;)))

where J; = (—(02 + 91‘4_1)/2 -2, —(01' + 9i+1)/2 + 2)

In the next lemma we find a suitable expression for the functional f. restricted to Z f,e'

Lemma 18 For all |e| < €1, for all L > Lo, for all k, for all (61,...,0;) € IR* with min;(0;41 —
0;) > L there results:

folul + ..+ ub +w(L,0) + w.(L,0) = kb+ e(Glug,) + - .. + Glug,)) + B(L,6,60)  (3.17)

where B has the following property: there is a positive constant Cig such that, if 0} satisfies 6; —
0i—1 > L and 0;41 — 0, > L then

|ﬁ(La€791a cee aei—herlmei-‘rh e 7016) - ﬁ(L7€a917 e 76i—179i)9i+17 v aek)|
= O(exp(—Ci6L)) + €0, (1). (3.18)

Proof:

For the sake of simplicity we shall give the proof of (3.18) for i = 1 only.

Let ¢ € C*(IR, [0,1]) satisfy: ¢ =0 on (—oo,—1], ¢ =1 on [1,+00), |[¢| <1 on IR.
We shall use the abbreviations: S = uf, + ...+ uf and ¢1(-) = p(Dtl2 4.

We first prove:

ﬂ(Lvevgla .. agk) f&(ugl + ¢1(w + we)) + fG(S + (1 - d)l)(w + wﬁ))

(G(ug,) + ...+ G(ug,)) — kb + O(exp(—CL)). (3.19)

Indeed
B(L,€,01,....0k) = fe(ug, + S +w+we) — e(Gug,) + ...+ G(ug,)) — kb.

Moreover we can write
fe(uﬁ1 +S+w+w) = fe(ug1 + o1 (w+we)) + fe(S+ (1 —d1)(w+we)) +7(L,e,6q,...,60k).
By lemma 8-(i), using that supp ufi C [-6; — L/4,—0; + L/4], we have that

4

(r(Lye,01, .. 04)] C/]R <ty + 010+ B (S + (1 60)w + 00))|

IN

_|_

C/ ik + d(w + B|IS + (1 — 1) (w + @0)]
R

IN

Since (supp 2 (61 (1w +w.)) N supp (1= ¢1)(w +1.))) C [~(6: + 02)/2 — 1, —(0 +02)/2 + 1,
by lemma 17

d

[ 1551w+ 8101 = én)w -+ )] = Ofexp(~C(62 = 01))) = Olexn(~CL))
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We get the same estimate for [ |¢1(w + @c)[|(1 — ¢1)(w + @e)|.
Hence we derive that |r(e, 01, ...,0;)] = O(exp(—CL)) and (3.19) holds.

We now prove:
fe(uf, + ¢ (w + w.)) — €G(ug,) = b+ O(exp(—CL) + €?). (3.20)

We recall that b is the critical level of f; associated to the critical point ug. Indeed,
fe(ug, + ¢1(w + @) — €Gug,) = folug, + ¢1(w + @) + €G(ug, + ¢1(w + @) — €G(ug, ).
As in the proof of lemma 6 we can write:
folug, + ¢1(w +we)) = fo(ug,) + (fo(ug,), o1 (w + we)) + O] (w + we)| ).
Since supp ¢1 C (—(01 + 62)/2 + 1, 4+00) by lemmas 13 and 14 we get:
161w + @) |[* = O(lw + @e[§) = O(¢* + exp(~CL)).

Moreover by lemma 10-(i)

(folug,)sdr(w +we)) = (foluo,), ¢1(w +we)) + O(||lug, — ug, [[||¢1(w +we)|)
= O(exp(—CL)(e + exp(—CL))) = O(exp(—CL))
and
folug,) = fo(ue,) + O(|lug, —ug,||) = b+ O(exp(~CL)).
Hence

folug, + ¢1(w +@.)) = b+ O(* + exp(—CL)). (3.21)
In addition
e(Gug, + ¢1(w +we)) — Glug,)) = e(G(u,) — Glug,)) + eO(||f1(w + we)|])

= e(O(|lug, — ug,|) + O(lw + wcly))

= ¢O(e +exp(—CL)) = O(* + exp(—C'L)).
From (3.21) and the latter formula we get (3.20).
Combining (3.19) and (3.20) we derive
B(L €01, k) = fe(S+(1=¢1) (wte)) — (k—1)b—e(G (ug, ) +. . .+G(up,)) +O(exp(~CL) +¢?).

(3.22)
(02, ...,0;) being fixed set v(01) = fe(S+ (1 — ¢1)(w+w.)). In order to estimate v(01) —(67)

we are going to compute %(91). Since —(¢1) = §¢51 we have:
1

061

87 / _ 1 i _ a _
a9, () = (S + (L= o) (w +@c)), =501 (w + Do) + (1 = d1) - (w + @),

Since supp ¢1 C [—(01 +02)/2 — 1, —(61 + 65)/2 + 1] we have that

[(fe(S+ (1= ¢1)(w + @), *%dﬁ(w +@))| < CIfL(S + (1= 1) (w + @) ol (w + @e) o
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Therefore by lemmas 9 and 17

[(fe(S + (1 = ¢1)(w + we)), —%dﬁ(w + we))| = Oexp(=C(02 — 61))). (3.23)

We can write:

(fU(S+(1—¢1) (w+dc)), (1—¢1) 7- (w+we>)—(fé<u£1+8+w+we)( —¢1) 7 (w+we>)+s(e791,...,9k>

801 a'91

where, by lemma 8-(ii),

Is(e,01,...,04)| < C / L orwr B2 (1-01) o - (w00)) [+l (w+m0) | (1- >§1<w+we>'~

Since supp ¢1 Nsupp (1 — ¢1) C [—(01 + 602)/2 — 1, —(01 + 62)/2 + 1] we get by lemma 17

0
[5(01, - O, )] = Oexp(=C (02 = 1)) [ 55— (w + ).
Hence by lemma 16
|s(01,...,0k,€)| = O(exp(—C (02 — 61))). (3.24)

Now we have fs’(ug1 +S+tw+w) = Zf:1&67¢119,i. Using the properties of supp u(,ﬁ, supp ¢1, supp
(1 — ¢1) we derive

k

(fel(u01 +S+w+ we) (1 - (bl)agl (U} + we)) = Zizlée,i(ué’ (1 - ¢1)82 (w + we))

k

- . 0 _
= Zi:2am‘ (Ug;, 87('[1) + we))

= ZZ 201“89 (g, w + we) = 0.

Combining (3.23) and (3.24) we get:

Iy
96,

Now let 8; and 0] satisfy both 62 — 6, > L and 63 — 0 > L. We can assume that 6] < 6; .

Then
0
L Ov(s
ho) @)l < | LalCIF
. 00,

—2-(01) < Cexp(—C'(02 — 01)).

01
/ Cexp(—C' (02 — 5)) ds

’

IN

IA

C”exp(—C’(Gg - 01))
Finally
[7(61) = v(61)] = O(exp(—~CL)). (3.25)
(3.22) and (3.25) imply the statement in lemma 18.0

We now show how to obtain k-bump solutions and then solutions with infinitely many bumps.
It is possible to prove that:
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Theorem 3 Let (V1),(V2),(W1) and condition 1 hold. Then there exists a positive constant Cyr
such that: Yw > 0 there exists e > 0 such that Ve € (—e2,0) U (0,€2), Vk € IN, VU;, =
(Ciyydiy)s- - Uy, = (Cip»diy) satisfying ming—y . g—1(ci,,, — diy) > Le := —Chrlnle| there are
(01,...,0k) with 0, € U;, = (¢;,,d;,) and a solution u. of (2.1) which satisfies:

kg
||ue - leluglEHL‘”( R) < w.

Proof: Choose 0 < €2 < €1 such that for || < ez, # 0 and L > L. := —Ci71Inle|, where
Cy7 = 2/C4g, one has in formula (3.18)

10(exp(—CigL)) + eor (1) < |e|g. (3.26)
By lemma 13
Yk, V(61,...,0;) such that min(6;411 —0;) > L ||w(L,01,...,0k)|lcc = O(exp(—CioL)) (3.27)

and by lemma 14
Hwe(L7 917 cee ,ch)Hoo < 2012|€|'

Hence for € small enough and L large enough we have, for all (61, . .., 0) such that min;(6;4+1—6;) >
L
’ w _ w
||w(L791a79k)||00<§ and st(L,01770k)Hoo< 5 (328)

We may assume that we have chosen e; small enough so that (3.28) is satisfied for all |e] < ez
and L > L. . Assume that min(c;,, —d;;) > Le for some iy < ... <'ig.

Define the function of k real variables fe by fe(01, ..., 0) = fe(ug +...+ug +w(Le, 01, ..., 0k)+

We(Le,01,...,0k)). From now in this proof we assume, without loss of generality, that ¢ > 0.
fe(917"'70k)|0i1><~--><0ik attains its minimum at some point (61,...,0;) € Uy, x ... x U;,. We
claim that (0y,...,0)) is in U;, x ... x U;,. By lemma 15, it implies that u. = ug: +...+ ug: +

w(Le,01,...,0,) +we(Le,01,...,0;) is a solution of (2.1) which satisfies:

k
L.
||ue - Zl:lue_iz

Let us prove that, for example, 0, # d;,. We argue by contradiction. If §; = d;,, since
(diy,02,...,60k) is a minimum of f,, we have:

< [w]loo + [|@e]]oo < = + 2
0o S || W||co Welloo = = — = Ww.
2 2

ﬂ(dil,ég, N ,ék) — fl((lil,ég, N ,Hk) S 0. (329)
On the other hand by formula (3.17) and from (3.26) we get:

fﬁ(dil?§27"'7ék) _.fs(aila§27"'79k) =

_ _ _ 1
E(F(dll) 7F(a11)) + (ﬂ(di17027"'50k) 7ﬂ(a115927"'70k)) > €1 — eg = 6577 > 07

a contradiction with (3.29). -
Similarly we can prove that ) # c¢;, and that for any [, 6; ¢ 9U;,.
Therefore f. has a minimum in U;; x ... x U;, and the proof is complete.O
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Remark 9 By the exponential decay properties of ug the solution given by theorem 3 satisfies also
the estimate :

k
|lue — lelueil Lo ( ®) < 2w,

provided € is small enough.

Since L. does not depend on k it is possible to get from the above theorem, arguing as in [17],
the existence of solutions with infinitely many bumps:

Theorem 4 Let (V1),(V2),(W1) and condition (1) hold. Yw > 0, there is ea > 0 such that Ve €
(—€2,0)U(0, €2), for any sequence of intervals (Us, = (ci,, dy,))icsczz satisfying infie 5 (ci,,, —ds,) >
L. = —Ci7lule|, there are (0;)ics with 0, € U;, = (¢i,,d;,) and a solution ue of (2.1) which satisfies:

Le
llue =2, ug = my < w.

If J is infinite, such a solution u. has infinitely many bumps.

3.3 Solutions with bumps located near minima and maxima of I.

In this subsection we indicate a different condition on the Melnikov primitive which allows to
find multibump homoclinic solutions of (2.1) with bumps located near maxima or minima of the
Melnikov primitive. The details are omitted for the sake of brevity.

Assume that:

Condition 2 There are n > 0 and a sequence (U, = (¢pn, dn))nez of bounded open intervals of IR
which satisfy:

(i) For any n, either “T'(c,) >n and I'(d,) < —n” or “T'(¢c,) < —n and I'(d,,) > n”;

(ii) ¢ — 400 as n — +oo and d,, = —00 as n — —o0.

Theorem 5 Let (V1),(V2),(W1) and condition 2 hold. Assume that D*V is locally Lipschitz con-
tinuous. Then the statements of theorems 3 and 4 hold.

We will not give the proof of theorem 5. We just specify that it is enough to prove that V|e| < €y,
Yk, Y(04,...,0;) € R® with min;(6; — 6;_1) > L one has:

w(L,e,Gl, ...,0;)| = O(exp(—CL)) + eoc,1.(1), i=1,...,k,

where ( is defined by formula (3.17). This can be done thanks to the estimates given in lemmas
9, 10, 13, 14 and 16. Then a simple degree argument yields theorem 5.

As a consequence of theorem 5 it is possible to prove the existence of solutions with infinitely
many bumps, these bumps being located near maxima and minima of the Melnikov primitive.

3.4 Non-degeneracy of the Melnikov primitive and a uniqueness result

In this section we show that if the Melnikov primitive I' possesses non-degenerate critical points
then a uniqueness result can be proved.
To make a precise statement we assume the following condition:
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Condition 3 There exist n,v > 0 and a sequence (an)nez of critical points of the Melnikov
primitive I' with a,, — +00 as n — +00 and a,, — —o0 as n — —oo such that for any n one has:

minGE[an—V,an—&-u] |F//<0)‘ > 0.

Remark 10 Note that condition 3 implies condition 1 (if T > n on [an — v,an + V] ) as well as
condition 2, with (cp,dn) = (an — v, an + V).

Remark 11 If T' is periodic condition 3 is satisfied whenever I' possesses at least one non-
degenerate critical point a: take a, = a + Tn, where T is the period.

The main result of this subsection is the following theorem:

Theorem 6 Let (V1),(Va),(W1) and condition 3 hold. Moreover assume that D*V is locally Lip-
schitz continuous. Then there exist ws > 0,e3 > 0 and a positive constant Cig such that: for
all € € (—e€3,0) U (0,€3), for all k € IN, for all (possibly infinite) sequence (iq)qesczz such that
—aj, > L, 4+ 2v := —Ciglnle| 4 2v there is a unique solution u. of (2.1) which satisfies:

L/
||u5 - qujuaieq

To prove theorem 6 we need the following lemmas:

@igia

|L( Ry < ws.

Lemma 19 Assume that D2V is locally Lipschitz continuous. Then there is a positive constant
Cig such that for all L > Ly and |e| < €y, for all k and for all (01, ...,0;) € IR® with min;(0;41—6;) >

L
0
| (L, ol + w400, 0) = D(6:)] = op,e(1)(e + exp(~CroL))

foranyi=1,... k.

Proof: We have:

0
39,(fe/(“51+---+“5k+w+we)»ﬂeﬁ-) =

0 _
W+ w) +

(fl(uf, + .. +uf, +w+a.),if) =

(f/(ug, + ... +uf, +w+w)ug, ug +

0
(w+10e) + (fl(ug +w+we),iig) = Up+Us

00;

where:

0
Ur = (f§ (ug, +w -+ e)ig, i, + - (w + 1)) + (foug, +w + ), i)

and

0
U = e(G" (uf, +w + we)ug,, i, + %(w +w.)) + e(G' (uf, +w + W), g ).

We now estimate Uz. Lemma 9-(iv) implies that:

(w+w)| < 0|2

(G (uf, +w + we)ig,, 50

0 _
8—& (w+ w)lp.
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Hence by lemma 16:
U = e(G"(uf, +w + we)ig,, i) + e(G' (ug, + w + we), iif,) + €oe,.(1).
Now we have:
(G (ug, +w + e )i, 0f) = / —D*W (t, ug, +w + We)iug, iy,
R
By lemmas 10-(i), 13, 14
||“5L + W+ We — u9iHoo = OL,E(l)-
We easily see by (W7) that this implies
(G" (ug, +w + we)ig,, uy,) = (G (u, )iy, , uy,) + or,e(1).
In the same way
(G'(ug, +w +we), i) = (G'(ug,), ii,) + ore(1).

Finally since: ||ig — g, |12 = [|4f — o[> — 0 and ||ig —iig, || > = ||iify —tiol]L> — 0 as L — +o0
we have, by lemma 9-(ii)-(iv):

Uz = €(G" (up,)a,, 1g,) + €(G' (ug, ), iig,) + €or, (1) = eI (0;) + eor, (1). (3.30)
In order to estimate U; we use the invariance of fy under the action of IR. In fact this property
implies that:
Yui, v € E, V0 € IR (f0(0 % v1),0 % v2) = (f{(v1),v2).

Deriving with respect to 6 we get:

(fo" (v1)o1,v2) + (fo(v1), 02) = 0. (3.31)

Applying (3.31) to v; = ugi 4+ w + W, and vy = ug we obtain:

. 0
U1 = ( 6’(“&- +’11)—|—’1I]6)U,51L7’LL£1 + 870(11)—’—@6))

— (5 (ug, +w + We)ig, iy, + b + W)

= (fY(u§ +w+w)uf, = (w+ @) — (b + w)).

9
06;
Now by lemma 10-(iii) and since supp @§ C I; = [—(0; +0;41)/2, —(0;+0;-1)/2] , we can write
for any v € E
|(fo (ug, +w + we)ug, v)| = O(lw + welo + exp(~CsL))|v]o-

Hence by lemmas 13, 14

0] A
|U1| = O(e 4+ exp(—CL))(] 0. (w+ We)|g + | + Welo). (3.32)
By lemma 16 we have that:
0
|89- (w+ @e)|g = O(e + exp(—Cr4L)). (3.33)
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Now we have to estimate |t + g = |-
Since we already have an estimate of |w + @]9 we have only to prove that

sup (/, (L, 9)2) — or(1) + O(e2).

)

We have by lemma 14

Zuo—i—weLQ ZalLee

i=1
with |&; (L, €,0)| = O(e + exp(—Ci3L)).
Hence on I;

. ...L
—iig, 4 ug, — We + We — VV (ug, + ) — VW (t,uf, +We) = e,i(— ug, +if).

Consequently on I;

. ...L
|| < el +|—iig, +ug —VV (ug)) |+ VV (ug )=V V (ug +e) |+|dei|| = g, +ig |+e| VW (L, ug, +1ic)|.

By (V1) and (W1) |[VV (uf) — VV (ug + )| < Cliwe| and [VW (¢, uf + )| < C(|ug | + |wel).
Moreover

|—iig, +ug, —VV (ug)| = |—(iig, —iio,)+(ug, —ug,)—(VV (ug,) = VV (ug,))| < liig, —iig, |+C"|ug, —ue,|.
Hence on I;

. ..L
[we| < C"(Jte| + elug, | + |ag; )+ lacl (| w, | + lig]).

L
P

Now lemmas 14 ( estimates on |W|s and on |&.;|) and 9 ( estimates on Hug — ig,|| and on
H“gi — ug,||) can be used to get

|e|g = O(e + exp(—CL)). (3.34)
(3.34) combined with (3.30), (3.32) and (3.33) yields the desired result.

Lemma 20 Under the same hypotheses as in lemma 19 there is a positive constant Cog such that
foralll € {1,...,k}, for all \y,..., \x € IRF

e

Proof:
By lemma 19 it is enough to prove that:

U] = sup|Aj](eor (1) + O(exp(=Cao L))
J

FLul 4l 120, 3) = Ml (6)] = sup || (o (1) + Oexp(—ChoL))).
J

QJ‘Q,)

where

U= ZA]&‘G Yug, + ...+ ug, +de), ) Z/\ £( Zue )
J#l J#l

ow
89 ) Uel)
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Now since supp ug}l N supp ugj = () for j # [ we have

awe
U= (fl/(’u,el +w€ UQZ,Z)\] 89
J#l
Let ¢ € FE satisfy » = 0 outside Ij, ¥» = 1 on (-6, — L/4,—6, + L/4), v is continuous and linear
on each component of I}\(—0; — L/4,—6; + L/4). Then, since supp ug, C (—=60; — L/4,—0; + L/4),

8w€ 8w6
‘(f//(’u@z +’U}€ u9172)\.7 80 = |(f”(u01 +’U)€ Uel,¢ Z)\j 80
J#l Ve
O,

< C|f”(u91 + we)u9,|W1 2(IL)| Z}\] 69 |W1 2(1)

J#l

8w5

< Otk + a0igll A0

J#l
Now by lemma 16

Z A 627;16 = max IA;|O(e + exp(—Ci4L)).
J#l 0
Moreover by lemmas 10-(iii) and 9-(iv)
|12 (uy, + ey o < g/ (ug, + o), o + |€l|G” (ug, + Be)iglo = Oe + exp(=CsL)).
So we get the desired estimate 0.
Proof of theorem 6:

We shall prove theorem 6 in the case where J = 7Z (so the sequence ¢; is infinite). The existence
of the solution u. is a consequence of theorems 4 or 5: w3 being fixed, choose I < v small enough

so that for all L > 8, Vk, for all sequences (qu)qez with 0;, —a;,| <7 and 0;,, —0;, > L:
ws
_ < 2 .
1D e, — v, Moo <5 (3.35)
and apply theorem 5 with U; = (a; — 7,a; + 7). We get that for € # 0 small enough there exists
L¢ = —Clnle| such that if ming(a;,,, — a;,) > Lc then there exists a solution of (2.1) u, with:
L w3
_ e < 22
e = werzlonlloo < 5 (3.36)
(3.35) and (3.36) imply that:
ube
-> <
||u€ qEZZ alq wa-

In order to prove the uniqueness take ez small enough so that for |e| < ez,e # 0 and L > L, :=
(—=2/C4q) In |€¢] we have in lemma 20

leor.e(1) + O(exp(—CaoL))| < |e]n/3. (3.37)

An easy consequence of lemma 11 is that there is d3 € (0, 51) such that for all L > 8 for all
sequence (iq)qezz such that a; ., —a;, > L+ 2v, if [v — quz < |a < 03 then there are (0;,)qcz

and w € VVlOC which satisfy:

v = Z uéq +w, (wﬂéq) =0, (3.38)
€%
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0, € (a;, —v,a;, +v), |wlp <d1. (3.39)
Here | - |4 and | - |g denote the norms associated respectively with (a;,) and 6;, by remark 8.

Now, by standard regularity properties for the solutions of (2.1), there is w3 > 0 such that if v is
a solution of (2.1) then

o= ug, oo <ws = v — > Ug, la < 8
qEZL qEZZ
provided L is large enough and ¢ is small enough.

Arguing by contradiction we assume that for some € € (—e3,€e3) there exist two different

solutions of (2.1), u. and wu. which are at a distance smaller than ws from quz uLLL;q with
ai,., —ai, > L. +2v. Fix L = L_. Then by the above arguments we can write (provided e3
has been chosen small enough)

L / L /
Ue = Z ug, + Wwe, U, = Z u% + w,,
qEZL qEZZ
with [0, — a;,| <v, 0] —a;| <v, (ws,agiq) =0, (wl,ug ) = 0. By remark 8, if 6;, = 6] for all
'q
q then w. = w,. Hence there is [ such that 0;, # 0; . We can assume that

|0;, — 0;,] > sup|6;, — 0; |/2.
q

Set wy, = we(L,0;_,,...,0;) and w), = 0.(L,0; ,,...,0; ). We have

k k
L ~ . L
I Z ug, + wy) = Z Qeig Ug,,

q=—k q=—k

and it is easy to see that this equation implies, by lemma 14, that the sequence wy, is precompact
in Wh2. Now, if a subsequence of wj converges to w € VVlloc2 then we must have

loc
fe’(z uﬁiq +w) = Zaiquéq , wle < dy.

qEZL qeEZ

for some (a;, ), which implies by remark 8 that w = w.. Hence wy converges to we in V[/lloc2
Similarly wj, converges to w.. Therefore

k k
Z ug“iq +wp — ue and Z Ug;q +wj, — g in Wy,
q=—k q=—k
By remark 8 it implies that
k k
(f( Zkugiq +wy), i, ) — 0 and (f/( Zkué‘“ + w;),uél) =0
q=- a=-

as k — 0o. Set \;, = HQQ —0;,. Let gx be the function defined on [0, 1] by

k
g(S) = (fel( Z ugiq+s/\iq + ’JJS(La ei—k + SAifkv cee 79ik + S)‘ik))’uglil+s)\il)'
q=—k
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We have limg_o gx(0) = limg_ oo gx(1) = 0. Hence there exist points s; € [0,1] such that
gy, (s1) — 0. This implies

k
k 0 N
z : __ /\Zqi(fel( : : ué; +skAi +w5)’ugi +skAi ) — 0. (340)
g=—k " 00;, B a 1 :

Hence by lemma 20 we deduce that
[N €l (05, + sedi))| < 12Ai,|(eor,e(1) + O(exp(—CaoL)) + 0k (1)

with limy_, o 0x(1) = 0. By Condition 3 and (3.37) we derive that:
2
leln < [T (0;, + sii, )| < 2leor (1) + O(exp(—CL))| < |e|§77.

This contradiction concludes the proof of theorem 6. O

4  Bernoulli shift

In this section we describe some consequences of the previous results when the perturbation W is
T-periodic in time.
First of all let us recall some well-known results. Consider a diffeomorphism & : R? — R? with
a hyperbolic fixed point p. To make a precise description of the dynamics of ® in presence of a
transverse homoclinic point r # p we recall the definition of an abstract Bernoulli shift structure.
Let us consider the space ¥ = {0,1}%. ¥ is endowed with the standard metric:

_ n=-+o0 |5n - §n|
d(s,s) = Zn:—ooT'
With such a metric ¥ is compact, totally disconnected and perfect, i.e ¥ is a Cantor set.

On ¥ acts the continuous shift-map o defined by (o(s)); = s;+1. The shift-map o is the
prototype of chaotic map. Indeed o has a countable infinity of periodic orbits of arbitrarily high
periods, an uncountable infinity of non-periodic orbits and a dense orbit; ¢ exhibits sensitive
dependence on initial conditions.

The Smale-Birkhoff theorem states that if r # p is a point of transverse intersection between
the stable and the unstable manifold of p then there are [ € IN and and a homeomorphism
7:{0,1}% — I ¢ R?, where I = 7(X) is an invariant Cantor set for ®', such that ®' o7 =70 0.

In particular the Smale-Birkhoff theorem implies that the map ® exhibits sensitive dependence
on initial conditions. In fact such a theorem implies a stronger property, namely that the topological
entropy hiop of ® is positive. Let us recall that hy,p, is defined by the following expression:

Ins(n,e, R)
n

)

hiop = SUp polime o (limsup,, _, o
where:

s(n,e, R) = max{Card(E) : E C B(0,R) |Vx #y € E Jmax D% (2) — ®F(y)| > el

htop is a measure of the asymptotic distortion of the iterates of ® along the orbits. For example
the topological entropy of an isometry @ is 0.
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In small perturbations of autonomous Hamiltonian systems the transversality condition required
by the Smale-Birkhoff theorem can be checked using the Melnikov function. Indeed the Melnikov
function IV measures perturbatively the distance between W* and W*; hence non-degenerate
critical points of the Melnikov primitive correspond to transverse intersections between W* and
w.

Now we are able to describe some consequences of the results of the previous sections when the
perturbation W (-,u) is T-periodic. In this case one can define the Poincaré map ® : IR*" — IR*"
given by ®(xg, ) = (x(T,x0,%0), (T, xo, o)) where x(t,xo,xo) is the solution of (2.1) which
satisfies the initial conditions (0, zq, o) = 2o, @(0, xo, &) = £o. From (V;) the point 0 € IR*" is
a hyperbolic fixed point for the map &.

4.1 Approximate Bernoulli shift

A variational approach to the study of chaotic behaviours in Hamiltonian systems through vari-
ational methods started with the work of E.Séré [17]. He proved that the existence of solutions
with infinitely many bumps implies that it is possible to embed in the dynamics of the system an
approximate (discontinuous) Bernoulli shift structure and that the topological entropy of the sys-
tem is positive. ( See [17] for a precise definition of an approximate Bernoulli shift). In particular
in [17] the estimate on the topological entropy h¢o, > C/L is given, where C is a positive constant
and L is the sufficient distance between two adjacent bumps to glue up the bumps.

The same arguments of [17] show that theorem 4 or 5 implies the existence in system (2.1) of
an approximate Bernoulli shift structure and that the topological entropy h, is positive for € # 0
small enough. In particular we give the following estimate from below for hp:

C c
htop > = - .
LE 017 1D|6|

However, if we do not have any uniqueness property in theorems 4 or 5, it does not seem
possible to get a complete (continuous ) Bernoulli shift in general.

4.2 Complete Bernoulli shift

According to section 3.3, uniqueness can be obtained by the non-degeneracy of the critical points
of the Melnikov primitive. This implies that it is possible to embed a continuous Bernoulli shift in
the dynamics of the system. Thus we can prove by our method the following classical result:

Theorem 7 Let condition (V1),(Va) and (W1) hold. Moreover suppose that W is 1-periodic in
time and that D*V is locally Lipschitz. If the Melnikov primitive I possesses at least one non-
degenerate critical point a then for € # 0 small enough there exist | € IN and a homeomorphism
7:% ={0,1}% — I C IR®™ onto its image such that the following diagram.:

r 5 R

O'l l@l

Y - R
commutes.
Proof:
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Fix a positive constant r > 2||ug||s. Consider the set:
A ={u e L*(R) | u solves (2.1) and ||u||s < r}.

A, equipped with the topology of the uniform convergence on compact subsets of IR is a compact,
metrizable topological space.

Let wy = min(ws, ||uo||so/6), where ws is given by theorem 6.

By theorem 6 there exists €3 > 0 such that for any |e| < €3, there is L. such that for any infinite
sequence § = {...,8 p,...,5_1,80,51,--+,5n,--} €{0,1}% there is a unique solution u. of (2.1)

such that: ‘
1=-400 L'
||ue — E , 5iUa; oo < wa
1=—00

where a; = a+ i([L] + 1).
Consider the map:
J:{0,1}% — A,

which assigns toany s = {...,8 _,,...,5_1,50,51,---,8n,---} € {0,1}% the unique solution J(s) =
Ue.

Note also thatif s ={...,8_pn,...,8-1,50,81,--+,8n,---} Z8=9{...,8_n,.-.,5-1,80,81, -, 8n, -
then:

L =L L
I seul, = 3 ik oo > [ (41)
hence by the choice of wy J is injective. We claim that J is a homeomorphism between {0,1}%
and J({0,1}%) C A,. Since {0,1}# is a metric compact space, and J is injective it is enough to
prove sequential continuity for J. Let s™ € {0, 1}# be a sequence converging in {0, 1}% to s*°.
Then J(s™) is pre-compact in A,. Let J be a limit point of J(s™). We have:

L/
1) = 3 stvut

o < Wy (42)

and L
[|J(s™) — Zislmuafﬂoo < wy. (4.3)

For any compact interval I of IR |[J(s™) — J|| ;) — 0; moreover, since d(s™,s>) — 0, for any

i we get that s = s° provided m > m(i) . Hence passing to the limit in (4.3) we get:

_ I
||J - Zis(z?oua;

Comparing (4.2) and (4.4), we conclude by theorem 6 that J = J(s>). This proves that J(s™) —
J(s*°) and hence that J is sequentially continuous.
Consider now the action of Z on A, defined by :

0o < Wg. (44)

forpeZ vp(u) =u(-+p).

Let [ = [L] + 1 € IN. By the same uniqueness argument as that used above it is easy to show
that the diagram:

3

|~

i
AS

3

Q
M «—— ™

3



is commutative. The evaluation map:
Ev: A, — IR*" is defined by Ev(u) = (u(0), u(0)).

Ew is continuous and by classical continuity results on the Cauchy problem (Ev)~!: Ev(A,) —
A, is continuous. Moreover the diagram

is commutative.
Finally define the composition map 7 by :

7:% ={0,11% - R*™ givenby 7= FEvolJ

7 is obviously continuous. The last two commutative diagrams implies the thesis that is: 700 =
®! o 7. The proof is complete. O

Remark 12 Note that ( see [4]) transverse intersections between W* and W* correspond to non-
degenerate critical points of the functional fe.

5 Other applications

5.1 Radial systems
The previous arguments can be applied also to study radial systems like:
—ii 4 u = |ulP" u 4 eV W (t, u) (5.1)
with u € IR"™ and p > 1. The potential V is V(u) = ﬁ|u|p+1.
Let ug(t) be the unique solution of the scalar problem:

—'Ll.,() —+ ug = U(]p, (UO > 0), U()(O) = 0, |t1\1m U()(t) =0. (52)

Then Z = {up(-+6)¢ | 0 € IR and € € S"~1} is a smooth n-dimensional manifold of critical points,
diffeomorphic to ™! x IR.

In [1] it is shown that Z is non-degenerate, i.e. Ty, ,Z = Ker f(ue ) and one readily checks

that the arguments developed in the previous sections can be applied also in this situation. G(ug¢ )
is the usual Melnikov primitive and has the form:

G(ufﬂ) = 1—‘(5, 9) = - /IR W(t> §uo(t + 9))dt (53)

Condition 1 becomes:

e There are a constant 7 > 0 and a sequence (U, ) ez of bounded open subsets of S”~! x IR
which satisfy: mingy, I' > ming I' + 1 and, 7 denoting the projection "' x R — IR,
m(Up) = (¢n, dy) with lim,, 4 » ¢, = 400 and lim, ., d,, = —oc0.

If the above condition is satisfied then the same result as in theorem 4 holds true.
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5.2 Forced systems

Here we apply the methods of the last sections in order to find multibump solutions for differential
equations of the form:
—i 4+ u=VV(u)+ef(t) (5.4)

with f € L°°. Assume that (V;) and (V) are satisfied and that V is C3. For € = 0, 0 is a hyperbolic
equilibrium. A simple application of the implicit function theorem shows that in a neighborhood
of 0 and for € small enough there exists a unique solution 7.(t) € L of the perturbed system. We
want to prove the existence of solutions doubly asymptotic to .

First we insert the following change of variables:

U=+ (5.5)
in equation (5.4) and we obtain for = the following equation:
—i+a=VV(z+y) - VV(7) (5.6)

If we define:
W(€7t7 J}) = —V(Qﬁ) + V(‘T + ,76) - VV('VG)‘T - V('ye)

equation (5.6) becomes:
—i4+ax=VV(x)+ V,W(et, z). (5.7)

Since v = ey + o(€) we have that Wi(e, t,z) = eVV(2)v(t) + o(e)Wa(e, z,t). Then (5.7) is in a
well-suited form to carry out the arguments of sections 2-3 and 4 (see remark 4).
The Melnikov primitive of system (5.7) is:

r(6) = — /]R YV (uo(8) ot — 0)dt.

Since ug is a solution of —% 4+ x = VV (x), one finds that:
r+) =— /IR(—iio + ug)yo(t — 0)dt. (5.8)

Moreover since v, solves (5.4) v solves the equation —+y + 70 = f(t). Hence integrating by parts
in (5.8) we have that:

r«0) = —/ ft —0)ug(t)dt = T'(0).
R

Then we can apply to equation (5.4) all the results of the last sections proving the existence
of infinitely many homoclinics and of solutions with infinitely many bumps provided the Melnikov
primitive I' satisfies conditions 1 or 2.
5.3 Partial differential equations of Schrodinger type
Thanks to the generality of our approach we can handle partial differential equations such as:

—Au+u = |[uff2u+ eV, W(z,u) =0, |u(z)] — 0 as |z| — oo (5.9)

where u : R" — IR. We assume that 2 < p < 2* = 2n/(n — 2) and that:

o (W3) W e C*(R" xR, IR), W(z,0) =0, V,W(x,0) =0, D*W is continuous uniformly with
respect to x € IR™; moreover |D2W (x,-)| < C1|ul|9=2 + Cy for some ¢ with 2 < g < 2*.
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In this paragraph we will work in the Sobolev space E = W12(IR",IR).

It is well known that the unperturbed equation has a unique positive solution zy such that
V2z0(0) = 0 and that zo has an exponential decay as |z| — .

The perturbed functional is fe = (3)||ul|> + F(u) + ¢G(u) where:

F(u) = —1/ [ulPde and G(u) = — W(x,u).
P n R"”
The manifold Z = {z¢(-+0) | # € IR"} is a smooth n-dimensional non-degenerate critical manifold
for fo ( see [2] and references therein for a proof).
Still in this situation, using the Sobolev embedding theorems, it is possible to apply the argu-
ments of sections 2 and 3.
The Melnikov primitive I' : IR™ — IR is defined by:

NG . W (x, zo(x + 0))dx.

Assume that I satisfies:

Condition 4 There are n > 0 and a sequence (U, )nez of bounded open subsets of IR" which
satisfy:

(i) 'y, attains its minimum at some a,, € U, and Ujpy, > n+T(an);

(ii) mingey, || — o0 as |n| — oo.

By the same arguments as in section 2, condition 4 allows to prove the existence of infinitely
many k-bump solutions of (5.9).

Moreover, we can prove the existence of solutions with infinitely many bumps: let us define a
norm which is analogous to the norm |- |¢ defined in section 3.

Fix L > 8 and (04,...,0;) € IR™ such that min; |0;x1 — 0;| > L. For x € IR"™ we define:

R(z) =sup{R | B(x, R) contains at most one 6, }

where B(z, R) is the ball of center x and radius R. Note that R(z) > L/2. Next we define the
norm on F

Ullg = mMax 4 [U|g, [|U||Ww1.2(D) (>
[[ullo = max | Jul, [[u]]

where |ulp = sup, [j~

diam{#6, .. .,Gk}}.

Using the above norm, with arguments similar to those of the previous sections, it is possible
to prove that:

min; | — ;| > 2M with M =

UHWL%Bmﬁ@va>amiD::{$€]R"

Theorem 8 Let (Ws3) and condition 4 hold. Yw > 0, Jeg > 0 such that Ve € (—eq,0)U (0, €4) there
exists L. such that for any sequence (i))ickcz with infy |dist(U;,. ,,U;,)| > L. there are 6; € Uj,
and a solution u. of (5.9) which satisfies:

lue = ) ualloo < w.
l

1419
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6 Appendix

In this appendix we prove lemmas 8, 9, 10, 17.

Proof of lemma 8-(i):
By the definition of f. we have that for |e] < 1: |fe(s+ 1) — f(s) — fe(r)] =

Gl =glslE =gl = [ (V) V=V e [ (W stn) = W(es) =W ()| <

[(s,7)] + /]R [V(is+r)=V(s)=V(r)|+ /IR W (t,s+7r)—WI(t,s) —W(t,r)| (6.1)
Obviously

wm»s/mmm+VWL (6.2)

In order to estimate the other terms in (6.1) consider the following function of the variable s, V,.(s)
=V(s+r)—V(s) — V(r). We have that :

[Ve(s)l = [Va(s) = Vi (0)] < suppepo,yy| DVr(As)lls| = supyepo,y| DV (As + 1) — DV(As)][s].
Moreover:
|IDV(As + 1) — DV (As)| < Supu€[0,1]|D2V(u()\s + )+ (1= p)As)||r(t)].
Hence the last 2 formulas yield:
[V(is+r)=V(s)—V(r)] < supu7>\6[071]\D2V(ur + As)||r||s].
Since D?V is continuous and ||ur + As||oo < 2b there exists a positive constant C’(b) such that:
D2V (pr + As)|Irlls| < C"(b)Ir|ls]

and this implies that
/ W@+me@fvvnzO@/“mm. (6.3)
R R

Using that D?W (t,u) is bounded on bounded subsets of IR™ uniformly with respect to ¢ we can
obtain:

/ Wt s+ 1) — Wt s) — W(t,r)| < O”(b)/ ir[]31. (6.4)
R IR

Lemma 8-(i) is a consequence of (6.1), (6.2), (6.3) and (6.4).

Proof of lemma 8-(ii):
He have: |(f{(s +r) — fi(r),v)| <

[(s +mr0v)—(r,v)] + /IR |DV (s +r) — DV (r)||v|dt + /]R |DW (t,s + 1) — DW(t,r)|dt

< /%bWHﬂMH+/¥wmamWﬂVﬁ+MmﬂMﬁ+/%wmquﬁW@T+MmﬂMﬁ
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since ||r + As||o < 2b and |D?W(t,)| is bounded on bounded subsets of IR" uniformly in ¢ we

have that:
/ sllo] + 131161 + / C'(b)|slodt + / C' (b) vl sldt
R IR IR

co) [ Jsllo +Islol.0
R

IN

IN

Proof of lemma 9-(i):
By the property (Py) of lemma 7 thereis Y € E such that ||Y|| =1, supp Y C [my i41—2,mi—1,;+2],
where mi 41 = —(0; + 0i11)/2 and | fg(uf, + -+ ug, +v)lo < 5(fo(ug, +- - +uf, +v),Y).

It is clear that for j # i, Y and ug have disjoint supports. Since by (V1), |[VV(z)|/|z| is
bounded on bounded subsets of IR", we have that:

|(fo(ug, +- - +ug, +v),Y)| :I(UiﬂLv,Y)—/ VV (ug, +v)Y] < (IIUOL||+1)+C/ Jug, +l|Y].
R R

This clearly implies |(f§(ug, + ... +uf, +v),Y)| < (1+O)(|Ju§]|+ 1) and we get (i).

Using (1) the estimate 9-(ii) is obtained in the same way. 9-(iii) and 9-(iv) can also be
easily proved, using (Py) and the fact that |[D?V| and sup, |D?*W (t,-)| are bounded on bounded
subsets of IR"™.

Proof of lemma 9-(v) Let Y € E satisfy
k k
Zue +v) ZuéZ )Xo < 5(( Zue +v) Zué )X,Y)
with ||Y]] <1 and supp Y C [m; j+1 — 2,m;_1; + 2| for some j. Then
k mi_1.i+2
J—=1,3
Zue +v) Zué X,Y) / (D*V (ug, +v) — D*V(uf)) XY,

mjj+1—2

Now, since D2V is uniformly continuous on bounded subsets of IR™, using the fact that ||v]|e <
2|v|g we can write

1D?V (g, +v) = D*V (ug, [l < 7(|v]o) (6.5)
with limgs_,o7(s) = 0. Moreover
mj—1,;+2
L I IV IX w0, s -20m, 1) < 31X (6:6)
™M1

Combining (??) and (6.6) we get the desired estimate.

Proof of lemma 10-(i)

Since 0 is a hyperbolic equilibrium point of (2.1), ug and g have exponential decay, i.e. there
are two positive constants C' and C’ such that

[uo(t)]; lio(t)] < Cexp(=C"|t]). (6.7)
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Since ug solves equation 2.1 , (6.7) implies by (V;) that iy and u( have also exponential decay. So
we can assume that
liio (£)], | wo (£)] < C exp(=C"[t]).

By the definition of u} it is easy to see that these estimates imply the existence of constants C”’
and C" such that for all L > 8

[luo — ug || + ||t — g || + |liio — iig || < C" exp(~C""L)

(Remember that ug and ul coincide on (—L/4,L/4)).

Proof of lemma 10-(ii)

Let Y € E,||Y|] < 1 have its support in I; + [-2,2] for some i € {1,...,k}, where I; =
[—(0; + 0i41)/2,—(0; + 0;—1)/2]. Then for j # i supp ué"j Nsupp Y = ) and since up, solves (2.1):

(b, + - +ub),Y) = <u9€,Y>—/RW(u£i>Y

(uk — g, Y) / (VY () = YV ()Y

Hence, by 10-(i) and since D?V is bounded on bounded subsets of IR™ there is a constant C' such
that:

|(fo(ug, + ... +uf),Y)| < Cexp(—C'L).
Therefore 10-(ii) holds by lemma 7.
Proof of lemma 10-(iii) Let Y satisfy ||Y|| <1, supp Y C I, + [-2,2].
We have:
((f (ug + .. 4 uf, +o)(\ag + .+ et ), V)] = () (uf, +v)hiig YY)
I\if31fo (ug, +v)ag Jol[Y]
3Ca il lo

IANIA

by lemma 9-(iii). So we get the first estimate from property (FPy) of lemma 7.

Now assume that D2V is locally Lipschitz continuous. Then
|(f5 (ug, +v)Nitig,, Y| = | Nill (g, Y) */ DV (ug, +v)ig Y.
R

Since
(t1g,,Y) —/ D2V (ug, )ig,Y =0
R

we get ((using that supp Y C L, UL_1 U1 and ||Y]| < 1)

(0 (ug, + )N, V)| < Ial(I(ag —uewY)IJr/RIDQV(uoLi +v) = DV (ug, )15, || Y|

+

[ 1DV (o)l ~ i 1Y)
R

Xl (I, — oo,

N

)

< +C(|vlo + [Jug, — uo, |,

The second estimate is then a consequence of 10-(i) and of property (Pp).
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Proof of lemma 17 :

We are going to prove that:
[ @ellwr.2(7) = Oexp(=C (62 — 61)) (6.8)

where J = (*(91 +92)/272,7(91 +92)/2+2)
For k£ < (92 —91)/2—.[//4 let Gy = (—92 +L/4+k,—91 —L/4—k)

We already know by lemmas 13 and 14 that ||we||w1.2(q,) < €+ Cexp(—CL). Now, since G N
supp ugi = () for all 4, by the definition of w and w,, we have

—We + We = VV () + VW (t,0.) on Gy (6.9)

For k£ > 1 let ¢y be the function defined on Gg by: ¢ = 1 on Gg; pr = 0 outside Gi_1; @i is
continuous on Gy and it is linear on each component of G;_1\Gy. By (6.9)

[ Geouthe + ) + (e pu) = (VV () + W (1), puis) =0
Go
This implies (since |¢x| < 1)

/ e+ e 2 < / YV (@) +eVW (£, 60) ||+ / [ e | [V (20) 4V W (8, ) e
Gk Gk

Gr-1\Gk
(6.10)
Now, by (V1), (W1), lim,_o [VV (2)|/]z| = 0 and there is a constant C such that |VW (¢, z)| < C|z|
for |z] < 1. Hence, by lemmas 13 and 14, for L large enough and e small enough,

1
/ |VV(w€)+eVW(t,1DE)||wE\gi/ e |2, (6.11)
Gy
(6.10) then implies
/ [+ |0 < 2/ (eld] + [VV (i) + VW (L, )|
Gy Gr_1\Gk

R
Gr_1\Gk

where C” is some constant independent of L,e, k. Setting R = |\1D5||%/V1,2(Gk) we get Ry <
C"(Ry—1 — Ry). Hence

IN

1

Ry < mkay

Therefore .

O/l +1
If we take k = [(f2 — 01)/2 — L/4] — 2 then J C G}, and (6.12) implies the estimate of lemma 17.

Ry < ( e (€2 4+ exp(—CL)). (6.12)
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